Algorithmic Statistics Problem Set 4

Problem 1 Recall from lecture the definition of the two-community stochastic block model $SBM(d, \epsilon, n)$. In this problem we will consider the clustering problem for the stochastic block model under adversarial corruptions.

Design and analyze a polynomial-time algorithm with the following guarantee. Suppose G_0 is an n-vertex graph drawn from $SBM(d, \epsilon, n)$. Given any G' such that the symmetric difference between the sets of edges in G and G' has size o(n), the algorithm finds \hat{x} such that $\mathbb{E}|\langle \hat{x}, x \rangle| \geq \Omega(n)$, as long as $\epsilon^2 d \geq C$ for a sufficiently-large constant C, where x is the ground-truth clustering of the vertices of G.

You may rely on any polynomial-time primitives presented in lecture.

Problem 2 Moitra book (https://people.csail.mit.edu/moitra/docs/bookexv2.pdf), problem 3-2.

Problem 3 You observe i.i.d. samples (a_i, y_i) for i = 1, ..., n, where

$$a_i \sim \mathcal{N}(0, I_d), \qquad y_i = \langle a_i, x \rangle^2 + \varepsilon_i,$$

and $\varepsilon_i \sim \mathcal{N}(0,1)$ are independent. The hidden signal $x \in \mathbb{R}^d$ is an unknown unit vector. Your goal is to estimate x up to a global sign, i.e. recover a vector \hat{x} such that $\min\{\|x - \hat{x}\|, \|x + \hat{x}\|\}$ is small. This problem is known as phase retrieval.

Design a spectral estimator for x.

- (a) Construct a symmetric matrix statistic, built only from the samples $\{(a_i, y_i)\}_{i=1}^n$, whose spectrum in the population (i.e. its expectation) reveals the direction of x up to sign. You may find it useful to consider quadratic or bilinear functions of the samples.
- (b) Compute the population version of your matrix and show that its top eigenvector spans the same one-dimensional subspace as x.
- (c) Define the empirical version of your statistic using the n samples. Prove that, with high probability and for sufficiently large n, the top eigenvector of the empirical matrix yields an estimator \hat{x} satisfying

$$\min\{\|\hat{x} - x\|, \|\hat{x} + x\|\} \le C (d/n)^c,$$

for some absolute constants C, c > 0 (polylogarithmic factors in d, n are acceptable).