
Algorithmic Statistics
Lecture 1: Introduction & Uniformity Testing

What can we learn about the world by observing data? How much data do we need? What
should we do with it?

The field of statistics developed from the early 1900s to answer these questions when datasets
were gathered byhand and could bewritten on a fewpieces of paper. But that is no longer theworld
we live in – datasets are huge and high-dimensional, and they demand tremendous computational
resources to process. (Witness: as these notes are being written, the hyperscalers are on track to
spend one third of a trillion dollars in 2025 alone building out compute infrastructure to train and
serve data-driven artificial intelligence.)

This class is about the intersection of statistics and computation. We will adopt a theoretical
computer science approach to reason rigorously about the guarantees of algorithms which learn
from statistical data. Wewill study simple models and ask basic questions: which statistical learning
tasks can be accomplished in polynomial time? what are the basic principles for designing algorithms for those
tasks? what assumptions about the world must we make a priori to believe the outputs of our algorithms?

Today we will give some very simple examples to describe why we need this course in the first
place – there are very simple statistical problems in high dimensions which are simply unsolvable!

1 Example 1: Polling

We ask = people independently whether they approve of a policy/candidate. Our goal is to
estimate what fraction of the population as a whole approves. Let -1 , . . . , -=

iid∼ Ber(?). The
natural estimator for ? is

?̂ =
1

=

=∑
8=1

-8 , E[?̂] = ?, Var(?̂) =
?(1 − ?)

=
≤ 1

4=
.

Hence Std(?̂) ≤ 1
2
√
=
, and to estimate ? within � (with constant confidence) it suffices to take

= = Θ(1/�2). Recall that TV(%, &) = 1
2

∑
G∈X |%(G) − &(G)| is the total variation distance between

distributions % and &. Since the total variation distance between Ber(?) and Ber(? + �) is $(�),
an alternative perspective is that this estimator learns the distribution of - up to total variation
distance � using $(1/�2) samples.

Is there a better estimator? Perhaps we can get away with = = 1/�1.99 samples?
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2 Le Cam’s Two-Point Method

Let %, & be distributions over a finite domain X. A (deterministic) test is a function ) : X= →
{%, &}. The error probability of ) against the pair (%, &) is

max
{

Pr
-∼%=
[)(-) = &], Pr

-∼&=
[)(-) = %]

}
.

Lemma 2.1 (Le Cam). For all tests ),

error ≥ 1

2
− TV(%= , &=) .

Proof. Write � = {G : )(G) = %}, so �2 = {G : )(G) = &}. Then

Pr
%
[)(-) = &] + Pr

&
[)(-) = %] = %(�2) +&(�)

= 1 − %(�) +&(�)
= 1 −

(
%(�) −&(�)

)
≥ 1 − sup

�⊆X
|%(�) −&(�)|

= 1 − 2TV(%, &) (since TV(%, &) = 1
2 sup

�

|%(�) −&(�)|)

Dividing by 2 gives the claim. �

3 Lower Bound for Bernoulli Mean Estimation

Consider distinguishingBer(1/2) fromBer(1/2+�) using = i.i.d. samples. By Lemma 2.1, it suffices
to upper bound TV(%= , &=) where % = Ber(1/2) and & = Ber(1/2 + �). Now we introduce one of
the first real technical ideas of the course: tensorization. It turns out that relating TV(%, &) directly
to TV(%= , &=) is not so easy. Instead, it’s better to go via a different measure of distance between
% and &, one which behaves well under taking an =-fold product.

Definition 3.1 (Kullback–Leibler divergence). For distributions %, & on X,

KL(%‖&) =
∑
G∈X

%(G) log %(G)
&(G) .

The KL divergence is the expected log likelihood ratio between % and &, with the expectation
taken under %. We could spend several lectures discussing the meaning of KL divergence, but we
don’t have time in this course – take an information theory course!

Lemma 3.2 (Tensorization and Pinsker). For product distributions %= , &= ,KL(%= ‖&=) = =KL(%‖&);
moreover TV(%, &) ≤

√
1
2KL(%‖&).

Lemma 3.3. For % = Ber(1/2) and & = Ber(1/2 + �) with |�| ≤ 1/4,

KL(%‖&) = $(�2).
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Proof.

KL
(
Ber(12 )



Ber(12 + �)) = 1
2 log

1
2

1
2 + �

+ 1
2 log

1
2

1
2 − �

= −1
2 log(1 + 2�) − 1

2 log(1 − 2�)
= −1

2 log(1 − 4�
2)

= $(�2) ,

using log(1 − G) = −G − $(G2) for small G. �

Proposition 3.4 (Necessity of = = Ω(1/�2)). Any estimator that distinguishesBer(1/2) fromBer(1/2+�)
with constant advantage requires = = Ω(1/�2) samples.

Proof. By Lemmas 3.2 and 3.3,

TV(%= , &=) ≤
√

1
2 KL(%= ‖&=) =

√
1
2 =KL(%‖&) = $(

√
= �).

By Lemma 2.1, the error is at least 1
2 (1 − $(

√
= �)), which is ≥ 1/4 unless = = Ω(1/�2). �

4 Uniformity Testing and Learning on the Hypercube

In the polling example, everymember of the populationwedrew samples fromhad just one feature
– supporting vs not supporting the candidate/policy in question. In this course we are primarily
concerned with high-dimensional populations/distribution. For example – images, documents,
videos, cryptographic keys, . . . . The canonical high-dimensional “universe” is the 3-dimensional
hypercube {0, 1}3. Mathematically, a population of 3-bit individuals will be represented as a
distribution % on {0, 1}3.

Gold Standard: Learning in Total Variation Distance The most ambitious goal we could have
is to learn such a distribution % in total variation distance – meaning that after looking at some
samples from %, we find a distribution %̂ on {0, 1}3 such that TV(%, %̂) ≤ �. Such a model %̂ will
let us answer any question about the population % which we choose to pose, with high accuracy,
without observing any more samples.

More formally, for any 0/1-valued question we can ask about the population (what fraction
have attribute �? what fraction have feature 1 correctly predicted by the best linear predictor using
features 2 − 3? . . . ), we can estimate the true answer to the question using %̂, since TV(%, %̂) =
sup 5 : {0,1}3→[0,1] | E% 5 − E%̂ 5 |.

Impossibility of Learning in Total Variation Unfortunately this is an impossible goal, unless we
get to see Ω(23) samples, for any nontrivial value of �. We will argue why only very informally,
since we are about to prove an even stronger result formally. The hypercube is big – there are 23

strings of length 3, so to specify % requires 23 numbers. So we need to observe at least 23 numbers
– each sample gives us 3 numbers, at most.
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5 Uniformity Testing

Learning in total variation distance is too ambitious. Perhaps there are simpler things we can learn
about a high dimensional distribution using only 3$(1) samples? There are, but it is not so trivial to
see which ones – that is part of the purpose of this class. Let’s an example of a seemingly simpler
problem which still cannot be solved with fewer than exponentially-many samples.

LetX be a domain of size # . Given sample access to an unknown distribution % overX, decide

�0 : % = *(X) vs. �1 : TV(%,*(X)) ≥ �.

Here*(X) is the uniform distribution on X.
For example, if someone claims to you that they have a source of true randomness generating

uniform samples from {0, 1}3 1, and you want to see if they are lying, this is the hypothesis test you
want to perform.

Theorem 5.1 (Paninski). Θ
(√

#
�2

)
samples are necessary and sufficient for uniformity testing.

In these notes we give the lower bound proof. What does this theorem have to do with high-
dimensional learning? Note that if we have an unknown distribution % on {0, 1}3, Paninski’s
theorem tells us that we need Ω(23/2) samples even to test if % is the uniform distribution. The
intuition behind Paninski’s theorem is that with �

√
# samples we cannot tell the difference

between *([#]) and the uniform distribution on a randomly chosen subset of half the support,
since in either case with good probability no element is repeated in the list of samples.

5.1 Lower Bound via a Random-Half Construction

Wewill use Le Cam’s two-point method. Of course we choose % = *([#])= . What should be other
distribution & be? If we take & to be = draws from a specific subset of half the elements of [#],
say [#/2], then % and& will be easy to distinguish with a constant number of samples – just check
if all the samples are from [#/2]. Instead, we have a be a bit more clever about how we choose
& – we will use a random subset of half of the domain. For analysis purposes, we will pick this
random half in a slightly structured way.

To define &:

• Sample /1 , . . . , /=/2 ∼ ±1

• Define a distribution @ on [#] by @28 = (1 + /8�)/# and @28−1 = (1 − /8�)/# .

• Draw = samples independently from @.

Note that any @ which can be obtained in the above procedure satisfies TV(*[#], @) ≥ �. So if
we had a good test for �0 vs �1, we would be able to distinguish % from &.

Lemma 5.2. TV(%, &) ≤ $(
√
exp($(=2�4/#)) − 1)

So, if = �
√
#/�2, then the TV distance is close to 0, and by Le Cam’s, the error probability of

any test remains at least, say, 1/4.
We will sketch the proof of this lemma in a slightly different setting, for technical convenience.

1https://scitechdaily.com/better-cybersecurity-with-a-new-quantum-random-number-generator/
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Technical slight-of-hand: Poissonization Rather than drawing exactly = samples, we consider
the setting where we draw =̃ ∼ Poi(=) i.i.d. samples.

Definition 5.3 (Poisson Distribution). A random variable - is said to follow a Poisson distribution
with parameter � > 0, denoted - ∼ Poi(�), if

Pr[- = :] = 4−��:

:!
, : = 0, 1, 2, . . .

This leads to some appealing technical simplifications.

Poissonization facts. Let-8 be the number of occurrences of element 8 ∈ [#] in the (random-size)
sample.

• Under %: -1 , . . . , -# are independent with -8 ∼ Poi(�)where � = =/# .

• Under &: the pairs
(
-28−1 , -28

)
are independent across 8, and

-28−1 ∼ Poi(�(1 + /8�)), -28 ∼ Poi(�(1 − /8�)).

Second-moment (chi-squared) calculation. Instead of KLdivergence, it will be simpler to use an-
other quantitywhich also tensorizes nicely and similarly upper-bounds the total variation distance,
called the "2 divergence.

Definition 5.4 ("2-divergence). For two distributions % and & on a finite domain X with %(G) > 0

whenever &(G) > 0, the "2-divergence of & from % is

"2(&‖%) =
∑
G∈X

(&(G) − %(G))2
%(G) = EG∼%

[(
&(G)
%(G) − 1

)2]
.

Fact 5.5. TV(%, &) ≤ 1
2

√
"2(%‖&)

Exercise (on problem set 1) Using the above facts about Poissonization and "2 divergence freely,
finish the proof of Paninski’s sample complexity lower bound (poissonized variant) by proving the
poissonized version of Lemma 5.2.

Remark. De-Poissonization changes constants only, so the same lower bound holds for a fixed
sample size =.
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