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1 Introduction

In matrix completion we consider a low-rank matrix model with missing data.

For instance, recall the movie rating example from the low-rank matrix factor-
ization lectures. In that example, entry (8 , 9) of the matrix represents the rating
given to movie 8 by user 9. However, in reality, most users will only rate a
small subset of the movies. The question that we are concerned with is: can we
estimate the missing data?
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2 Formalization

The ground truth consists of an unknownmatrixΘ★ ∈ R3×3 with rank(Θ★) ≤ A.
For instance, Θ★ may represent the ratings given to 3 movies by 3 users. For
simplicity we assume that Θ★ is a square matrix, but the case of a rectangular
matrix is similar.

We observe = noisy entries of Θ★ at random locations. Specifically, we observe
^8 and y8 pairs such that

y8 = 〈^8 ,Θ
★〉 +w8 ,

where
^8 = 4a8 4

)
b8
,

a8 , b8
8.8.3.∼ Uniform({1, ..., 3}),
w8 ∼ N(0, �2).

Note that, using the notation above, 〈^8 ,Θ
★〉 = Θ★

a8 ,b8
.

We want to focus on the case Ω(3 log 3) ≤ = � 32. The lower bound of 3 log 3
ensures that with high probability every row and column contains at least one
observation (see the «coupon collector’s problem»). Note that, on the other
hand, with 32 samples most of the entries of Θ★ are observed, which makes
the problem much easier. Also note that, because Θ★ is a rank-A matrix, it is
specified by 2 · A · 3 unknowns, so we also expect to need A · 3 � =.

The maximum likelihood estimator (MLE) for this problem is

�̂MLE = arg min
Θ

{
=∑
8=1
(y8 − 〈-8 ,Θ〉)2 | rank(Θ) ≤ A

}
.

Unfortunately, computing the MLE is NP-hard in the worst case.

3 What we want

First, we want to have a polynomial-time computable estimator �̂.

Second, we want this estimator to achieve small error 1
32




�̂ − Θ★



2

�
. What

upper bound can we hope to achieve on this error?

For a reasonable estimator, we might expect that

1
32




�̂ − Θ★



2

�
≈ 1
=

=∑
8=1
(〈^8 , �̂〉 − 〈^8 ,Θ

★〉)2.
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That is, we might expect the average error over all the entries to be approx-
imately equal to the average error over all the observed entries. Note the
similarity of the right-hand side to the least-squares error! Then, we might
expect to obtain error

1
32




�̂ − Θ★



2

�
≤ $

(
�2 · A · 3

=

)
,

which is the least-squares error if one of the two rank-A factors ofΘ★was known,
where A · 3 comes from the number of unknowns that specifies the other rank-A
factor.

However, as we will see, something is missing in this bound.

3.1 Obstruction

Consider the following example. Let A = 1 and � = 0, and suppose that

Θ★ ∈ {Θ ∈ R3 | Θ1,1 = ±",Θ8 , 9 = 0 for (8 , 9) ≠ (1, 1)}.

That is, Θ★ has a single non-zero entry at (1, 1) with value " or −" for some
known ". For instance, think of " = 23. The goal is to determine the sign of
Θ1,1.

Then, if = � 32, with high probability entry (1, 1) is not observed in any of the
samples. In this case y8 = 0 for all 8, so we have no information about the sign
of Θ★

1,1. All we can do is guess. Then, with probability at least 1
2 , the error is

1
32 ‖�̂ − Θ

★‖2� ≥
"2

32 .

More precisely,

max
Θ★∈{±"·414)1 }

E
1
3
‖�̂ − Θ★‖2� ≥ Ω(

"2

32 ) .

To fix this, we will allow the error to depend on ‖Θ★‖max = max0,1 |Θ★
0,1
|.

4 Polynomial-time estimator

We will obtain a suitable estimator by changing the objective function of the
MLE optimization so that it becomes polynomial-time computable.

Concretely, we consider an estimator of the following form for a 3-by-3 random
matrix _ ,

�̂ = arg min
Θ∈R3×3

{
‖Θ − _ ‖2� | rank(Θ) ≤ A

}
.
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Note that given _ , we can efficiently compute the estimator �̂ by truncating all
but the first A terms of a singular-value decomposition of _ .

How do we want to choose _? Some criteria are:

• we want _ to be a simple function of {(y8 ,^8)}=8=1
• we want _ to satisfy E_ = Θ★

Choose

_ =
1
=

=∑
8=1

y8 · 32 · ^8 .

Note that this satisfies

Ey8 · 32 · ^8 =
1
32

3∑
0,1=1

Θ★
0,1
· 32 · 404)1 = Θ

★.

Theorem 1. If = ≥ A · 3 log 3, then with high probability

1
32 ‖�̂ − Θ

★‖2� ≤ $((�
2 + ‖Θ★‖2max) ·

A · 3 log 3
=

).

Note that the upper bound in Theorem 1 contains the �2 ·A·3
= component that

we guessed earlier could be the desired error. In addition, the upper bound
contains another component that scales with ‖Θ★‖2max.

The proof of the theorem will require a matrix version of the Bernstein tail
bound, which is introduced below. Then we prove the theorem above.

5 Matrix Bernstein tail bound

Let` be a random 3×3matrixwith 3 ≥ 2. Assume thatE` = 0 and {`} = {`)}.
The latter means that the distribution of ` and its transpose are identical.

Definition. The random matrix ` satisfies the (�/ , 1/)-Bernstein condition if

∀9 ∈ N≥2 ,


E‖`‖ 9−2 · ``)



 ≤ 9! · 1 9−2
/
· �2

/ .

Theorem 2. If ` satisfies the (�/ , 1/)-Bernstein condition, thenwith probability
1 − 3−100, for `1 , ..., `=

8.8.3.∼ {`},




 1
=

=∑
8=1

`8






 . �/ ·
√

log 3
=
+ 1/ ·

log 3
=

.

Proof. See Section 5.4 in [Wainwright, 2019].
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6 Proof of Theorem 1

Let[ = �̂−Θ★ and] = _−Θ★. Note that the latter is equivalent to_ = Θ★+] ,
so] can be interpreted as non-Gaussian noise.

Claim 1. ‖[ ‖2
�
≤ 8 · A · ‖] ‖2.

The proof of Claim 1 is the same as for the multi-spike matrix model (see this
note). Then, what remains is to bound ‖] ‖.
Noise decompositon. We have that

] = _ − Θ★

=
1
=

=∑
8=1
(y8 · 32 · ^8 − Θ★)

=
1
=

=∑
8=1
(〈^8 ,Θ

★〉 · 32 · ^8 − Θ★ +w8 · 32 · ^8).

Let `(1)
8
= 〈^8 ,Θ

★〉 · 32 · ^8 − Θ★ and `(2)
8
= w8 · 32 · ^8 . Then we write

] =
1
=

=∑
8=1
(`(1)

8
+ `(2)

8
).

Finally, let] (1) = 1
=

∑=
8=1 `

(1)
8

and] (2) = 1
=

∑=
8=1 `

(2)
8
.

Claim 2. If = ≥ 3 log 3, then with high probability

(1) ‖] (1)‖2 ≤ $(‖Θ★‖2max ·
33 log 3
= )

(2) ‖] (2)‖2 ≤ $(�2 · 3
3 log 3
= )

Together, these two bounds give

‖[ ‖2� ≤ 8A · ‖] ‖2

≤ 8A · (‖] (1)‖ + ‖] (2)‖)2

≤ 16A · (‖] (1)‖2 + ‖] (2)‖2)

≤ $((�2 + ‖Θ★‖2max) ·
A · 33 log 3

=
) .

Dividing both sides by 1
32 completes the proof of Theorem 2. We prove now

the two parts of Claim 2. In both parts, the goal is to apply the matrix Bernstein
tail bound.
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Proof of Claim 2, part 1 Let ` = 〈^ ,Θ★〉 · 32 · ^ − Θ★, with ^ = 4a4
)
b for a

and b uniform in {1, ..., 3}. Note that `(1)1 , ..., `(1)=
8.8.3.∼ `.

Now, we prove that ` satisfies Berstein condition with parameter �2
/
= 33 ·

‖Θ★‖2max and 1/ = 2‖Θ★‖max · 32.

First, we have
‖`‖ ≤ ‖〈^ ,Θ★〉 · 32 · ^ ‖ + ‖Θ★‖
≤ 2‖Θ★‖max · 32

where we used that ‖〈^ ,Θ★〉 · 32 ·^ ‖ ≤ ‖Θ★‖max · 32 and ‖Θ★‖ ≤ ‖Θ★‖max · 32.

Let 1/ = 2‖Θ★‖max · 32, to be used in the Bernstein tail bound.

Second, we have the following. Note that below we use the Löwner order
notation, where for matrices � and �, � � � denotes the fact that � − � is
positive semidefinite.

E[``)] = E[〈^ ,Θ★〉2 · 34 · 4a4)b 4b4
)
a ] − Θ★(Θ★))

(1)
� E[〈^ ,Θ★〉2 · 34 · 4a4)a ]
(2)
� 34 · ‖Θ★‖2max · E[4a4)a ]
= 33 · ‖Θ★‖2max · �3

where in (1) we used that 4)b 4b = 1 and Θ★(Θ★)) � 0, in (2) we used that
〈^ ,Θ★〉2 ≤ ‖Θ★‖2max, and in (3) we used that E[4a4)a ] = 1

3
�3.

Let �2
/
= 33 · ‖Θ★‖2max, to be used in the Bernstein tail bound.

We now verify the Bernstein condition:

0 � E[‖`‖ 9−2 · ``)] � 1 9−2
/
· �2

/ · �3 ,

so
‖E[‖`‖ 9−2 · ``)]‖ ≤ 1 9−2

/
· �2

/ .

Finally, apply the Bernstein bound:

‖] (1)‖ ≤ $(�/ ·
√

log 3
=
+ 1/ ·

log 3
=
)

= $

(
‖Θ★‖max · (

√
33 log 3
=

+
232 log 3

=
)
)
,

where the term with
√

33 log 3
= dominates for = ≥ 3 log 3.
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Proof of Claim 2, part 2 Let ` = w · 32 ·^ , with ^ = 4a4
)
b for a and b uniform

in {1, ..., 3}, and with w ∼ N(0, �2). Note that `(1)1 , ..., `(1)=
8.8.3.∼ `.

We have
‖`‖ = |w | · 32 · ‖^ ‖ = |w | · 32.

We also have E|w | 9 ≤ � 9 · 9! (see «Wikipedia»).

We now verify the Bernstein condition with �2
/
= �2 · 33 and 1/ = � · 32:

0 � E‖`‖ 9−2 · ``) = (32)9 · E|w | 9 · E4a4)b 4b4
)
a ,

with E|w | 9 ≤ � 9 · 9! and E4a4a4)b 4b4
)
a = E4a4

)
a =

1
3
�3. Then

E‖`‖ 9−2 · ``)



 ≤ (32)9 · � 9 · 9! · 1
3

= 9! · (� · 32)9−2 · �2 · 33

= 9! · 1 9−2
/
· �2

/ .

Finally, apply the Bernstein bound:

‖] (2)‖ ≤ $(�/ ·
√

log 3
=
+ 1/ ·

log 3
=
)

= $

(
� · (

√
33 log 3
=

+
32 log 3
=
)
)
,

where the term with
√

33 log 3
= dominates for = ≥ 3 log 3.

7 Chapter notes

One of the first works that established rigorous guarantees for matrix comple-
tion was Candès and Recht [2009].

The exposition in this note is based mainly on a subsequent work Koltchinskii
et al. [2011].
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