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1 Introduction

In matrix completion we consider a low-rank matrix model with missing data.

For instance, recall the movie rating example from the low-rank matrix factor-
ization lectures. In that example, entry (i, j) of the matrix represents the rating
given to movie i by user j. However, in reality, most users will only rate a
small subset of the movies. The question that we are concerned with is: can we
estimate the missing data?
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2 Formalization

The ground truth consists of an unknown matrix ®* € R™? with rank(®*) < r.
For instance, ®* may represent the ratings given to d movies by d users. For
simplicity we assume that ®* is a square matrix, but the case of a rectangular
matrix is similar.

We observe n noisy entries of ®* at random locations. Specifically, we observe
X; and y; pairs such that
yi = (X;, ©%) + w;,

where
X, = eaiebTi,
a;,b; "% Uniform({1, ..., d}),
w; ~ N(0, ?).

Note that, using the notation above, (X;, ®*) = @Z' b
We want to focus on the case Q(d logd) < n < d?. The lower bound of d log d
ensures that with high probability every row and column contains at least one
observation (see the «coupon collector’s problem»). Note that, on the other
hand, with d% samples most of the entries of ®* are observed, which makes

the problem much easier. Also note that, because ®* is a rank-r matrix, it is
specified by 2 - r - d unknowns, so we also expect toneed r - d < n.

The maximum likelihood estimator (MLE) for this problem is

Owmik = arg min Z(y,- —(X;,0®))? | rank(®) < r} .
®

i=1

Unfortunately, computing the MLE is NP-hard in the worst case.

3 What we want

First, we want to have a polynomial-time computable estimator .

Second, we want this estimator to achieve small error &

L6 -0* . What
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upper bound can we hope to achieve on this error?

For a reasonable estimator, we might expect that
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That is, we might expect the average error over all the entries to be approx-
imately equal to the average error over all the observed entries. Note the
similarity of the right-hand side to the least-squares error! Then, we might
expect to obtain error
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which is the least-squares error if one of the two rank-r factors of ®* was known,

where r - d comes from the number of unknowns that specifies the other rank-r
factor.

However, as we will see, something is missing in this bound.

3.1 Obstruction

Consider the following example. Let = 1 and o = 0, and suppose that
@* e {®@eR? O, =+M,0;, =0for (i,j) # (1, 1)}

That is, ©* has a single non-zero entry at (1,1) with value M or —M for some
known M. For instance, think of M = 2¢. The goal is to determine the sign of
@1,1.

Then, if n < d?, with high probability entry (1, 1) is not observed in any of the
samples. In this case y; = 0 for all i, so we have no information about the sign
of ®F,. All we can do is guess. Then, with probability at least 1, the error is
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More precisely,
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max E=]|0@-0%|2 > Q(=—).
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To fix this, we will allow the error to depend on ||©*||max = max,, |7, |.

4 Polynomial-time estimator

We will obtain a suitable estimator by changing the objective function of the
MLE optimization so that it becomes polynomial-time computable.

Concretely, we consider an estimator of the following form for a d-by-d random
matrix Y,
0= arg min {||® - Y||% | rank(®) < r} .
O©eRdxd



Note that given Y, we can efficiently compute the estimator ® by truncating all
but the first r terms of a singular-value decomposition of Y.

How do we want to choose Y? Some criteria are:

e we want Y to be a simple function of {(y;, Xi)}!",
e we want Y to satisfy EY = ©*

Choose .
1
= — Z Yi- d2 - X
i3
Note that this satisfies
Ey; - d?-X; = Z OF, - d2 - eqe] = O,
a,b=1

Theorem 1. If n > r - dlog d, then with high probability

re dlogd

||® ©*[IF < O((0® + 0¥ f1ax) - )-

Note that the upper bound in Theorem 1 contains the “¢ component that

we guessed earlier could be the desired error. In addition, the upper bound
contains another component that scales with [|@*||2,...

The proof of the theorem will require a matrix version of the Bernstein tail
bound, which is introduced below. Then we prove the theorem above.

5 Matrix Bernstein tail bound

Let Zbe arandom dxd matrix withd > 2. AssumethatEZ = 0and {Z} = {Z"}.
The latter means that the distribution of Z and its transpose are identical.

Definition. The random matrix Z satisfies the (o7, bz)-Bernstein condition if

Vj €N, |[EIZIF2-ZZT|| < jt- b} 62

Theorem 2. If Z satisfies the (07, bz)-Bernstein condition, then with probability

1-d710 for Zy,.., Z, & {Z},

log d logd
Soz- Og bz'of .

Proof. See Section 5.4 in [Wainwright, 2019].



6 Proof of Theorem 1

LetU = ®-0* and W = Y-O*. Note that the latter is equivalentto Y = ©*+W,
so W can be interpreted as non-Gaussian noise.

Claim 1. [U]%2 <87 - [|[W]>.

The proof of Claim 1 is the same as for the multi-spike matrix model (see this
note). Then, what remains is to bound ||[W||.

Noise decompositon. We have that

W=Y-0*

1 n
= ;Z(yi‘dz'xi—®*)
i=1

1 n
” Z((Xi,®*> d* X - O* +w; - d* - X).
i=1
Let Zl(.l) =(X;,®*)-d?-X; — ©* and Zgz) = w; - d% - X;. Then we write
10,0, 50
_ 1 1 2
w=- ;(zl. +2Z7).

Finally, let W) = 1 327 Zz(.l) and W® =13m, ZEZ).
Claim 2. If n > dlogd, then with high probability

d®logd
1) IWOI? < O(IO* [[Frax - —27)

max n

2112 o d3logd
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Together, these two bounds give

a2 < 8r- W
<8r- (WO + [w®]))?2
<16r - (IWD|? + [WP?)

-d®logd
< O((0* + 110" ) - ———2).
Dividing both sides by % completes the proof of Theorem 2. We prove now
the two parts of Claim 2. In both parts, the goal is to apply the matrix Bernstein
tail bound.



Proof of Claim 2, part 1 Let Z = (X,©*) - d%- X — ©*, with X = e,e] for a
and b uniform in {1, ..., d}. Note that Z;l), "-,Z,(}) iid

2 — 48.

Now, we prove that Z satisfies Berstein condition with parameter o7,

1©* [IFax and bz = 2[|©*|max - d>.

max

First, we have
1ZIl < KX, ©*%) - d*- X|| + |©*||

< 2”®*”max . d2
where we used that |[(X, ©*) - d% - X|| < [|©®*|lmax - d% and ||@*|| < ||®*||max - 4°.
Let bz = 2||®*||max - 42, to be used in the Bernstein tail bound.

Second, we have the following. Note that below we use the Léwner order
notation, where for matrices A and B, A < B denotes the fact that B — A is
positive semidefinite.

E[ZZ"] = B[(X,0*)* - d* - eqe] epey | — ©*(©*)T
1)
< E[(X,0*)% d* e,el]

@
< d* - |©* [Ifax - Eleaes ]

max

= d - |0 ||fax - L

max

where in (1) we used that egeb = 1 and ©*(®*)T > 0, in (2) we used that
(X,0*)? < ||©*|12,.,, and in (3) we used that E[e,el] = 11,

max/

Let oé = d3 - ||@*||2,,, to be used in the Bernstein tail bound.

We now verify the Bernstein condition:
- o
0<E[lZ|"2-2Z"] < b, " - 05 - 14,

SO
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Finally, apply the Bernstein bound:

logd logd
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where the term with dominates for n > d logd.



Proof of Claim 2, part2 LetZ = w-d?-X,with X = eaeg for a and b uniform
in{1,...,d}, and with w ~ N(0, 6?). Note that Z;l), ) Z,(}) Mg

We have
I1Z|| = |w| - d*- |X]| = |w] - d>.

We also have E|lw|/ < o/ - j! (see «Wikipedia»).

We now verify the Bernstein condition with 0% = 02 - d®> and bz = 0 - d*:

0<E|Z|V72-Z2Z" = (d*) - Elw|’ - Eeqe] eper,

T

with Elw|/ < o/ - j!and Eeqeqe,

epel =Eeqel = 11;. Then

j— o1
[EIZIV2- 22" < @) - o - jt-
:j!.(o‘.dz)j_z Lo 43
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Finally, apply the Bernstein bound:

logd logd
IWE < 007 -y 2= + by - =52
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where the term with n

dominates for n > dlogd.

7 Chapter notes

One of the first works that established rigorous guarantees for matrix comple-
tion was Candés and Recht [2009].

The exposition in this note is based mainly on a subsequent work Koltchinskii
etal. [2011].
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