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1 Introduction

We observe a graph G on n nodes with a latent community structure. Suppose
that pairs of nodes are more likely to be connected by an edge in G if both are
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members of the same community, and less likely to be connected by an edge if
they are not in the same community. The goal is to approximately recover the
latent community structure underlying the observed graph G.

2 Stochastic block model

We consider the following widely-studied statistical model for graphs with
latent community structure, known as the stochastic block model. For simplicity,
we restrict ourselves to the most basic case of two disjoint communities that
affect the model symmetrically.

This model has two parameters: The bias parameter ¢ € [0,1] determines the
amount of information observed edges carry about community memberships.
The degree parameter d > 1 determines the average number of edges observed
per node.

We represent the latent community structure of the 7 nodes as a vector of labels!
x* e {£1}".

We observe a graph G on n nodes where for every pair i, j of distinct nodes
we decide independently whether to create an edge or not according to the
following probabilities,
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P {ij € E(G)} = {

Since the two vectors of labels x* and —x* give rise to the same distribution
over graphs, we can hope to recover the vector of labels only up to sign. It turns
out that the following goal is meaningful and allows us to recover the correct
communities up to at most a 0.1 fraction of nodes:?2

Goal. Given G, compute an n-by-n matrix X in polynomial time such that with
high probability,?
X - X*||2 < 0.001 - n?, 1)

where X* = x*(x*)T.

Overview In sec. 4, we discuss and analyze an algorithm based on singular-
value decompositions that achieves our goal (1) whenever d > ¢72 - log n. This
algorithm follows the same strategy that we have used for matrix completion in
previous lectures. Its analysis boils down to a spectral norm bound for certain

1Here, the set of nodes i with x;‘ =1 form one community and the set of nodes i with x* = -1
form another community.

2See this exercise

3The off-diagonal entries of the matrix X* = x*x*T indicate if two nodes are in the same
community or not.



sparse random matrices, which we prove by (a variant) of the Matrix Bernstein
inequality (see sec. 3).

In sec. 6 and sec. 7, we discuss and analyze a more sophisticated algorithm
that achieves our goal (1) whenever d > ¢72. This bound improves over the
previous one by a logarithmic factor. Remarkably, this bound is tight up to a
constant factor in the sense that for d < ¢72, no algorithm can possibly achieve
the goal (1). This algorithm is based on semidefinite programming and its
analysis makes use of Grothendieck’s inequality, which we prove in sec. 8.

3 Interlude: Matrix Bernstein inequality (variant)

The following version of the Matrix Bernstein inequality is an important ingre-
dient of our analysis of the algorithm in sec. 4. The crucial feature of this version
of the inequality is that we need to bound the variance of the sum of matrices
as opposed to the variances of the individual summands. For non-identically
distributed summands, this difference can be significant.

Theorem. Let Zy,...,Z, be independent n-by-n random matrices. Suppose
these random matrices are centered E Z; = 0 and symmetric Z; = Z;". Choose
0,b > 0such that ||Z;|| < b forall i € [m] and

m
Z EZZ"
=1

Then, with probability at least 1 — n71%, it holds

m
Sz
i=1

<a?.

So-+ylogn+b-logn. )

4 Recovery guarantees via spectral norm bounds

In this section, we consider an algorithm that follows the strategy we have used
for matrix completion:

o directly compute an n-by-n random matrx Y with the property EY = X*,
e output a best rank-1 approximation X of Y.

Since the diagonal entries of X* are all ones, we can choose the diagonal entries
of Y to be 1.



We choose the off-diagonal entries ¥;; of Y based on whether the nodes i # j
are adjacent in G or not:

©)

Yo — aj:=1-(%-1) ifij € E(G),
Y lag = -1 if ij ¢ E(G).

Since BY;; = P {ij € E(G)}- (a1 —ap)+agand P{ij € E(G)} = (1 +£‘x;‘-x]’.‘)'%,
it follows that for our choice of «ag, a1,

BYj =4 (a1 —ao)+ao+e- xf-x7 (a1 —ao)- &

Theorem. Suppose d > ¢ 2logn. Then, with high probability, the matrix
X = arg min{||X - Y||12: | rank(X) = 1} satisfies the recovery guarantee (1).

Proof.

Suppose n > 10,0 < e < land d > 10+ e72-logn. As in the analyses of the
estimators for the single-spike model and for matrix completion, the error for
the above estimator satisfies

IX - X*|12 <8 |y = X*|*.

Hence, in order to prove the above theorem, it is enough to show that with high
probability, [|Y — X*|| < 0.001 - n. Let Z;j = (¥ — X;;) “(ej-ej’ +ej-e). By

construction,
Y-X*=3"7;.
i<j
Furthermore, the random matrices {Z;;} are independently distributed. The
spectral norms of these matrices are determinisitcally upper bounded by b :=
1Zijll = 1Y = X
1
<1+2-(5-1)<b.
The first step follows from the fact that Z;; has two singular values equal to
|Y;; — Xi’]‘.l and all other singular values equal to 0. Moreover, we can choose

2._ 22

9 2d

as a variance proxy for {Z;;},
]EZ,‘]'Zi]'T = E(Yl] - X:]()2 . (el-eiT + E]'EjT)
2 T T
< ﬁ - (eje;' + ejej ).
Here, we use
Y2 2
S(1+e)%-a%+a%

S(1+e)£—d$;—”d.
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It follows that
ZEZZ']'Z,‘]'T < fz—nd . Z(Ez‘eiT + eje]-T)

i<j i<j
2
< L=0"1,.

Thus, by the Matrix Bernstein inequality (2), it holds with probability at least

1—p-100
lY - X*|| S0 -+/logn+0b-logn

2n? logn nlogn n2 log n
= + < .
e2d ed ~ 2d

Here, we use that the first term dominates up to a constant factor (as d > logn).

We conclude that with probability at least 1—7 1%, the estimation error satisfies
the upper bound
n?logn

e2d
In particular, this error bound is smaller than the desired bound 0.001 - n? as
long as d > O(e~2logn).

% 2
X = X*IF <

5 Interlude: Bernstein inequality (for scalars)

The analysis of the next algorithm we discuss relies on the following version of
the Bernstein inequalilty for scalar valued random variables.

Theorem. Let Z1, ..., Zy be independent real-valued random variables. Sup-
pose EZ; = --- =EZy = 0. Leto,b > 0 satisfy EZ] +--- + EZ3, < ¢% and
|Z1|,...,|ZN] < b. Then, for all 6 > 0, the following event has probability at

least1 -9,
|Z1 + -+ ZN| < 0 - [log(1/6) + b - log(1/6) .

6 Recovery guarantees via cut norm bounds

In this section, we improve the guarantees of the algorithm in sec. 4 by a
logarithmic factor and develop an estimator that approximately recovers the
underlying communities with high probability (in the sense of (1)) whenever
d > ¢2. (As discussed before, this bound on d is best possible up to constant
factors.)

Recall that the key ingredient for our previous analysis is a spectral norm bound
on the “noise matrix” ¥ — X*. Indeed, this logarithmic factor is necessary for
this bound (and not merely an artifact of our particular analysis). Moreover,
the algorithm in sec. 4 actually fails to achieve the goal (1) when d < ¢72-log .



In this light, a natural idea for improving our previous estimator is to choose a
norm that is better suited for the problem at hand than the spectral norm. To
this end, we consider the following family of estimators parameterized by a set
of matrices C C R™*",

X :=argmin {|IX - Y|2 | X e C} . @

We recover the estimator used in sec. 4 by choosing C to be the set of all rank-1
matrices. (We choose Y as before (3).)

In order to obtain lower error bounds, we should choose C to be as small as
possible while still including X*. In this sense, a natural choice for C would be
the set of all possible choices for X* (symmetric rank-1 matrices with all entries
1 or —1). For important technical reasons that we discuss later, we choose C to
also include non-symmetric matrices,

C:= {uvT | u,ve{£1}"}. 5)

This set C is a strict subset of the set of all rank-1 matrices. We can view
the matrices in C as (combinatorial) 2-by-2 block matrices with all ones in the
diagonal blocks and all minus ones in the off-diagonal blocks.

Theorem. As before, let G be an n-vertex graph drawn from the stochastic
block model distribution with degree parameter d and bias parameter €. Then,
the estimator in (4) for the choice of C in (5) satisfies the following error bound
with high probability,

2

n

S —.
eVd

We emphasize that the estimator presented in (the proof of) the above theorem

is a-priori not computationally efficient. We discuss in the next section sec. 7
how to make it computationally efficient (polynomial running time).

IX - X*|13

Proof. Since X* is a feasible solution for the optimization problem that X
optimizes, we have the following (familiar) inequality,

IX - X*|2 < 2(X - X*, Y - X*).

To upper bound this inner product, we consider the following matrix norm,
called cut norm,

(|M || cut == Il/{}eaé’«wl M) = maX}ﬂ(u,Mv) .

u,ve{xl

Since X, X* € C, we have (X — X*,Y — X*) < 2||Y — X*||us. Plugging this
inner-product bound into the above inequality, we get

IX = X*|2 < 4Y = X*|lcut -



It remains to show that with high probability, ||Y — X*||cut < %. To this end,

consider an arbitrary matrix W € C. Let Z;; := (¥;; - Xl,’]‘,) - Wij. Then,
(W,Y - X*) = 2221»,-.
i<j

Since the random variables {Z;; | i < j} are independent and have expectation
EZ;; = 0, we can apply Bernstein inequality to bound the tail probability for
their sum. Each variable Z;; satisfies the following uniform upper bound,

1Zj| <1 (Z-1+1< L.
At the same time, we can bound the variance of each variable Z;;,

EZ; <EY;
=(+expi-(2-G-12-%)+2

<(1+e)a %SS’—"d.

Choose 6 := 273", b := d and ¢ > 0such that % = n2- 3Z. Then, by the version
of Bernstein 1nequa11ty in sec. 5, with probability at least 1-4, it holds

W, Y-X*)<o- ‘llogz(l/é) +b -log,(1/9)

B2 n?
=i 3n + 25 -3n < \/E

Hence, we can choose t < % such that P{(W, M) >t} < o forall W € C. By
the union bound,

PLIY = X*llewe >t} < ) P{W, ¥ =X*) > t}
WeC
<M. =

7 Polynomial-time algorithm via Grothendieck’s
inequality

Recall the optimization problem underlying the estimator in the previous sec-
tion sec. 6:

Given a matrix Y, the goal is to find the closest rank-1 matrix X with
all entries 1 or —1.



This optimization turns out to be NP-hard (for worst-case Y). In this section,
we show how to obtain a polynomial-time estimator with the same error bound
(up to a constant factor) based on approximation algorithm for the cut norm.*

Concretely, we consider the following set of symmetric matrices,
&:={Z|Z>0,diag(Z) = Iu} .

This set of matrices is convex and has a polynomial-time separation oracle.5> We
consider the following matrix norm, which we call Grothendieck norm, defined
in terms of the set &,

e =max ({20 4]} 2 <.

The above inner product is equal to (Z12, M), where Z; is the upper right
n-by-n block of the matrix Z. Since the set & has a polynomial-time separation
oracle, there is a polynomial-time algorithm for computing the Grothendieck
norm using standard convex optimization techniques (ellipsoid method).

The following theorem shows that the Grothendieck norm is within a constant
factor of the cut norm.

Theorem. (Grothendieck’s inequality) For all matrices M,
IMlleur < [IMllc < kg - [|Mleut ,

where k¢ € [1,2c] is an absolute constant.

For the following choice of C, we obtain a polynomial-time computable estima-
tor in the family (4),
C:= {Zl,g | Z 68} . (6)

This choice of C turns out to be a super set of the choice in sec. 6. Note
that this directly implies that for any matrix M it holds that ||M||c.: < |[M|lc.
Nevertheless, we will be able to show the same error bound as in sec. 6 (up to
constant factors). The reason is that we will be able to bound the error in terms
of Grothendieck norm of the “noise matrix”. By Grothendieck’s inequality, this
norm is within a constant factor of the cut norm, which we bounded already in
sec. 6.

Theorem. As before, let G be an n-vertex graph drawn from the stochastic
block model distribution with degree parameter d and bias parameter ¢. Then

41t is interesting that we need here an approximation guarantee for the norm that appeared
in our previous analysis as opposed to an approximation guarantee for the optimization problem
underlying the estimator.

5Given a symmetric matrix Z ¢ &, we can find a hyperplane separating it from & as follows: If
diag Z # Ip,, then one of the matrices e;e;T provides a separating hyperplane. Otherwise, we have
Z # 0. In this case, Z has an eigenvector v with negative eigenvalue and the matrix vo" provides a
separating hyperplane.

¢This is left as an exercise.



for the choice of C in (6), the estimator in (4) satisfies the following error bound
with high probability,

n2

< —.
eVd

Proof. As usual, we bound the norm of the error in terms of the inner product
of the error matrix and the noise matrix,

IX - X*|13

I1X = X*|7 < 21X - X*, Y - X*)|
<4y - X
< 4k (1Y = X*leur

The second step uses that X,X* € & The third step uses Grothendieck’s
inequality.

Using the bound on the cut norm in sec. 6, we conclude that our estimator
satisfies with high probability,

& * 12 n?
_ < 1
I - X2 5 £

8 Proof of Grothendieck’s inequality

We will now prove Grothendieck’s inequality via a technique that is know as
randomized rounding. Let M be any matrix. Recall that ||M||.: < ||Mllg
because for the Grothendieck norm we are optimizing the same objective over
a larger set. It remains to prove that

IMlic < ke - [|MI|cut

We first consider the following alternate forms for the cut norm and
the Grothendieck norm. Recall that we defined the cut norm as
IMlcut = maxy, yez1y2(x, My). We claim that this is equivalent to

(x, My)

(x, My) = max ———"—
I verno) Txllellylle

max

¥l <L llyllo=1

This follows since (x, My) is linear in every coordinate of x and y (individually),
and linear functions attain their maximum at the extreme points. The second

equality follows by considering X = m and ij = ”yﬁ We also claim that the

Grothendieck norm has the following equivalent formulation:

IMllc = max M; j{ui, vj),
U1 ,eeeylly 01,00, 0y EB2N
where B?" := {w € R?" | ||w||> < 1}. See this exercise for a proof. In the same

exercise you will also show that we can replace the unit ball by the unit sphere,
i.e., with the set {w € R?" | ||w|, = 1}



8.1 Randomized Rounding

For a matrix M, let uy, ..., u,, v1, ..., € R¥ be unit vectors such that
IMllc = " My jui, 7).
ij
We use a technique refered to randomized rounding: Draw a random vector
g ~ N(0, I,) and define
xi =g, ui),y;:=(g,0j).

Note that g is the same in both definitions above. Also notice that x; ~ N(0, 1)
and y; ~ N(0,1) for all 7, j € [n]. Furthermore, observe that

E{x, My) =E ZMi’jxiyj = ZMi’j<ui,E [ggT] Z)j)
i,j i,j
= ZMi,j<Mi,Uj> = [M]lc .
i

That is, we expressed ||M||g as the expectation of (x, My). This enables us
to analyze the former quantity via properties of the standard Gaussian distri-
bution. In particular, it is now enough to show that E[(x, My)] < kg||M||cut-
Indeed, we will achieve this goal by showing that

IMllc = E{x, My) < allMllc + cl|Mlcut

for absolute constants 2 < 1 and ¢ > 0. We can then deduce Grothendieck’s
inequality by rearranging. In this proof, we will not try to obtain the best-
possible value for k.

The key idea behind the proof will be to truncate the large entries of x, y and
bound the resulting error. To this end, we define for i, j € [n],

<T ._ X >T o .. <
x7" = clamp (%), %77 = x —x7",

<T ._

y:*=clamp (y;), y;" = yi - y7",

where

clamp. (2) = z if |z] <7,
P2l =0 sign(z)  otherwise.

Therefore we can express

IMllc = E(x, My)
=E [(xST,MyST> + <x>’T’MyST> + <xST,My>T> + <x>T,My>T>] .

10



Now observe that (x=7, My=") < 7%||M||cu+ since the entries of x and y=" are
at most 7. Note that we are already making progress, since we have bounded
IM||¢ by some constant times ||M||,¢ plus some additional terms. Indeed as
stated above, we will now argue that these additional terms together contribute
at most a small fraction of ||M||¢ which will prove the theorem. We will now
focus on the remaining terms.

Define R := (x”7, My=") + (x=%, My~") + (x”7, My~")

Claim: There exists W € RZ™2" gych that W > 0, all diagonal entries of W are
strictly positive, and

E[R] = <W, (8 A(;I)> < WnlMllc

where Wi refers to the first diagonal element of W. Notice once again that we
are making progress. As long as we can show that Wi; < 1, we are done.

Let A > 1 to be decided later and define:

Ax>T A1x=T x7T
o (A‘ly“) o ( 1y ) o (y”)

In this exercise you will verify that the following matrix
W:=E [wlwlT + wgwg + w_a,wg]

satisfies the claim (for every choice of A). It remains to show that Wi; < 1. For
all i € [n] it holds that

Wi = A2E [ClampT(xiz)] +(A2+1E [(|xi| - "[)_2,_]

where (x); := max{x,0}. Note that we can write the above without loss of

generality for just x; since x; and y; have the same distributions. We will
show that E [(|x,-| - T)%_] < e~™/2. In the exercises we will show that there
exists a choice of A such that the remaining terms are upper bounded by e/,

Together this implies that Wy; < 5¢~""/* When choosing 7 to be a large enough
constant, this is smaller than 1. We write

B[] -] =2 [ -0y,
T
where y(x) is the density function of the one-dimensional gaussian distribution.
Now we have,
” 2 - 2 y(x
X=1 xdx:/ x=7)ylx—-r1
[ == [ a-oiye -0t

Yy [T o
SI‘;LaTX—y(y_T)‘/T (x—17)y(x-1)dx.

11



Since /:o(x —1)%y(x — 7) dx = 3, it follows that

y(x) e /2 < T2

Z/w(x - T)2y(x) dx < max

xzt y(x — 1) e e~ (x—1)?/2

9 Comments
links to relevant handwritten notes

first lecture
second lecture
third lecture
fourth lecture
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