
Notes on low-degree likelihood ratio tests

Sidhanth Mohanty

November 15, 2023

1 Prelude: information-computation gaps

Let’s start by discussing a few algorithmic problems that have given us a very useful lens into
algorithms & complexity in the average case.

Planted k-XOR aka sparse F2 linear equations. In this problem, x ∼ {±1}n is a hidden
signal. We are given m samples (S1, y1), . . . , (Sm, ym) where for each i ∈ [m]:

(Si, yi) : S uniform size-k subset of [n]

y :=

{
∏i∈S xi with probability 1− ε

uniform ±1 bit with probability ε

Algorithmic task. Given ((Si, yi))16i6m, recover x.

State of affairs. Information theoretic recovery of x known when m = Ω(n). Efficient
algorithms to recover x known when m = Ω

(
nk/2).

Planted clique in random graph. x is a random k-sparse vector in {0, 1}n is a hidden signal
aka planted clique. We are given a graph G where:

{i, j} edge when xixj = 1

{i, j} edge with probability
1
2

when xixj = 0

Algorithmic task. Given G, recover the planted clique x.

State of affairs. Information theoretic recovery of x known when m = Ω(log n). Efficient
algorithms to recover x known when m = Ω(

√
n).

1

Planted Boolean Vector. x ∼ {±1}n is the hidden signal. We are given a uniformly random
d-dimensional subspace V of Rn conditioned on containing x.

Algorithmic task. Given V , recover the planted Boolean vector x.

State of affairs. Information theoretic recovery of x known when d 6 n − 1. Efficient
algorithms for recover known when d = O(

√
n).

Our main motivating question is:

Question 1.1. How can we obtain rigorous evidence for the hardness in the regime where information-
theoretic algorithms exist but no efficient algorithms are known?

2 On proving hardness for average-case problems

In statistics, the inputs to problems are very structured, often comprising of independent samples, or
graphs and matrices where entries enjoy a lot of independence. However, as we saw above, despite
this nice structure, several algorithmic problems of interest are nevertheless seemingly hard. The
theory of NP-hardness fails to articulate why such problems are hard, since reductions from known
hard problems do not give such nice structured instances.

Two popular approaches to support that a problem is hard are:

1. Hardness against restricted models. For example, lower bounds against low-degree polyno-
mials, convex programming hierarchies, message passing algorithms, statistical query models, local
algorithms, etc.

2. Average-case reductions. Instead of starting with an assumption like P 6= NP, start with an
assumption like “Planted Clique is hard when k �

√
n”, or “Planted kXOR is hard when

m = 100n”.

In this lecture, we will focus on the first approach to proving hardness, focusing on a model for
low-degree polynomial-based algorithms.

3 Problem set-up

Consider the following algorithmic problem, commonly known as distinguishing or hypothesis
testing:

Distinguishing/hypothesis testing. Let N (null distribution) and P (planted distribution) be
two probability distributions. Given G drawn from either N or P , figure out whether the
sample came from N or P .

Think of the planted distribution P as akin to the three distributions mentioned at the start of
lecture, and think of the null distribution N as being a version of the distribution with no hidden
signal. Concretely:

2

• In the planted clique problem, the null distribution is an Erdős–Rényi graph G(n, 1/2) [every
pair of vertices ij is independently chosen as an edge with probability 1/2].

• In the planted kXOR problem, in the null distribution, the yi are all chosen as uniform ±1 bits.

• In the planted Boolean vector problem, the null distribution is a uniformly random d-dimensional
subspace of Rn.

Information-theoretic indistinguishability. Our model for impossibility to efficiently solve some
hypothesis testing problems is based on low-degree polynomials can be motivated by information-
theoretic techniques. (This is with the privilege of hindsight — the path to this model was a lot
murkier than the story below.)

The distinguisher with the highest success probability that can tell N and P apart is the
following function.

F(G) :=

{
N when N (G) > P(G)

P otherwise.

Concretely, this function maximizes

PrN [F(G) = N]− PrP [F(G) = N] = PrP [F(G) = P]− PrN [F(G) = P],

whose the value is equal to the total variation distance:

dTV(N ,P) := EG∼N

[∣∣∣∣1− P(G)

N (G)

∣∣∣∣].

When the TV distance between N and P is tiny, it is not possible to reasonably tell these models
apart from G.

Exercise 3.1. Prove that the total variation distance is equal the maximum of the above objective.

In the settings we are studying, the TV distance is close to 1, but it nevertheless seems hard
to tell these algorithms apart with an efficient algorithm. The issue is that the distinguishing
function F may not be efficiently computable. We would thus like to get a computational version
of TV distance, that articulates when efficient algorithms cannot tell two distributions apart. In
particular, the goal is to get a handle on “something like”:

max
F:inputs→{N ,P}

F efficiently computable

PrN [F(G) = N]− PrP [F(G) = N].

We would like to simplify the above expression for two reasons:

1. Our understanding of the space of “efficiently computable” functions is at a hopeless state.

2. Even if we replaced “efficiently computable” with some nicer set, it is typically not analytically
nice to try to maximize over Boolean functions.

3

One also grapples with the second point while proving information-theoretic lower bounds. A
relaxation of the TV distance is the chi-squared divergence, denoted χ2(P‖N).

dTV(N ,P) := EG∼N

[∣∣∣∣1− P(G)

N (G)

∣∣∣∣] 6
√√√√EG∼N

[(
1− P(G)

N (G)

)2
]
=: χ2(P‖N).

In many scenarios, it is a much easier quantity to control analytically. An alternate “variational”
form for the chi-squared divergence1 is the following:

χ2(P‖N) = max
F:inputs→R,F 6=0

EPF− EN F√
VarN F

Exercise 3.2. Prove the above variational formula for chi-squared divergence. Show that the optimizer
to the problem on the right is achieved by choosing F(G) as P(G)

N (G)
− 1.

The second relaxation that we make is to replace “efficiently computable” with an expressive
class of functions that are also analytically nice to get a handle on — low-degree polynomials! This
motivates defining

χ2
6D(P‖N) = max

F:inputs→R,F 6=0
F degree-6D polynomial

EPF− EN F√
VarN F

(1)

which we call the degree-D chi-squared divergence; this is more popularly known as the low-degree
likelihood ratio for reasons we will see soon.

The hardness hypothesis surrounding the low-degree chi-squared divergence is that it is a good
proxy for computational indistinguishability. Concretely, as first posited in [HS17]:

SupposeN andP are sufficiently “well-structured” distributions over Rn,2 and χ2
D(P‖N) =

on(1), then there is no nO(D/ log n)-time algorithm to distinguish N from P .

Power of the low-degree model. The power of the low-degree model comes from the fact that it
is quite easy to obtain a handle on χ2

6D(P‖N) for many distributions of interest, and thus predict
where the computational threshold lies. The predictions obtained from this method also accurately
line up with when many of our algorithmic techniques fail for several problems of interest.

It is possible to exactly characterize the function F that achieves the maximum in the definition
of the low-degree divergence from Eq. (1), which enables explicitly bounding the divergence
relatively painlessly.

Theorem 3.3. The function F achieving the maximum in Eq. (1) is given by:

F(G) =

(
P
N

)6D

(G)− 1 χ2
D(P‖N) =

∥∥∥∥∥
(
P
N

)6D

(G)− 1

∥∥∥∥∥
N

Here, for a function H, the notation H6D refers to its projection onto the subspace of degree-6 D
polynomials. The projection and norm ‖ · ‖N is under the inner product 〈H1, H2〉N = EG∼NH1(G) ·
H2(G).

1 Variational means it arises as the solution to some optimization problem.
2 see [Hop18] for a more precise formulation

4

We now derive the formula for F and χ2
D(P‖N).

Proof of Theorem 3.3. Observe that the objective in Eq. (1) is invariant to shifting and rescaling F,
and thus, we can write our optimization problem as:

max
F:deg(F)6D
EN F(G)=0
EN F(G)2=1

EPF(x) = max
F:deg(F)6D
EN F(G)=0
EN F(G)2=1

EN

[
F(G) · P(G)

N (G)

]

Now we use the following general linear algebra fact:

Fact 3.4. Let V be a subspace of an inner product spaceH, and let ΠV be the orthogonal projection onto V.
ΠV is self-adjoint, and consequently if x ∈ V and y ∈ H, then

〈x, y〉H = 〈ΠV x, y〉H = 〈x, ΠVy〉H.

By settingH as the space of (measurable) functions from Rd to R equipped with inner product

〈 f , g〉N := EG∼N f (G)g(G)

and V as {F : deg(F) 6 D, E[F] = 0} and applying Fact 3.4, we get

F∗D = arg max
F∈V

〈F(x),F(x)〉N=1

〈
F,
(
P
N

)6D

− Ex∼N
P(x)
N (x)

〉
N

= arg max
F∈V

〈F(G),F(G)〉N=1

〈
F,
(
P
N

)6D

− 1

〉
N

=

(P
N
)6D − 1∥∥∥(PN)6D − 1

∥∥∥
N

.

Finally,

EPF∗D(G) =

〈
F∗D,
P
N

〉
=

∥∥∥∥∥
(
P
N

)6D

− 1

∥∥∥∥∥
N

.

4 Case of planted clique

Simple algorithm when k > 10
√

n log n. In G(n, 1/2), every vertex has degree n/2± 5
√

n log n
with high probability. When k > 10

√
n log n, all the clique vertices systematically have larger

degree. Distinguisher can simply be based on the maximum degree vertex. Clique can be recovered
by taking top-k vertices, sorted in decreasing order of degree.

There is a spectral algorithm to recover a clique of size O(
√

n) in polynomial time.

Exercise 4.1. For every constant α > 0, give an algorithm that runs in time nO(log 1
α) to find the

planted clique when k > α
√

n.

Intractability We will now see how the low-degree method predicts the
√

n threshold for
planted clique.

5

Let N be G(n, 1/2) and P be the planted clique distribution with clique size k. Our goal in this
section is to compute χ2

D(P‖N) for D = O(1) as a function of k. Using LR(G) to denote PN (G),
and Parseval’s identity from Fourier analysis:

χ2
D(P‖N)2 = ‖LR6D − 1‖2

N = ∑
α⊆[n2]
〈LR6D − 1, χα〉2

where χα are the Fourier characters of functions from {±1}[n2] to C.
Towards computing the Fourier coefficients, fix α ⊆ [n2]. If |α| > D, 〈LR6D, χα〉 = 0. And if

1 6 |α| 6 D, then

〈LR6D − 1, χα〉 = 〈LR, χα〉
= EPχα(G)

= EP ∏
{i,j}∈α

Gij

= Pr[all vtcs touched by α in clique] · EP

 ∏
{i,j}∈α

Gij | all vtcs touched by α in clique


=

(
k
n

)|V(α)|

Thus:

χ2
D(P‖N)2 = ∑

16|α|6D

(
k
n

)2|V(α)|

6 ∑
t62D

2(
t
2)nt

(
k
n

)2t

6 C
(

k2

n

)2D

where C = O(1) because D = O(1).
Observe that this is o(1) whenever k = o(

√
n)!

Exercise 4.2. For N = G(n, 1/2) and P = G(n, 1/2) + k-clique, for k = o(
√

n) and D =

o(log2 n), prove that χ2
D(P‖N) = on(1).

Exercise 4.3. For N = random kXOR and P = planted kXOR where number of variables is
n and number of constraints is m, and k > 3, prove that for D = o

((m
n

)2/(k−1)
)

, prove that

χ2
D(P‖N) = on(1).

Exercise 4.4 (Hard). For N = random d-dimensional subspace of Rn and P =planted Boolean
vector distribution with same parameters, identify the (n, d, D) choices for which χ2

D(P‖N) = on(1).

6

5 Connections and broader discussion

Since the quantity χ2
D(P‖N) is quite easy to get a handle on and perform explicit calculations with

for many choices of N and P , it is a very appealing predictor for computational thresholds.
However, it is not known to imply lower bounds against any actual classes of algorithms. Here,

we state a few problems of interest.

• Lower bounds against low-degree algorithms. Show that χ2
D(P‖N) = on(1) implies a

lower bound against algorithms that: (1) evaluate a polynomial p on the input G, (2) threshold
on the value of p(G) to output P or N .

• Lower bounds against spectral algorithms. Show that if χ2
poly(D,log n)(P‖N) = on(1), then

for any nD × nD matrix M(G) constructed by placing a degree-D polynomial of G in every
entry of M(G), spectrum(M(G))G∼N is “close” to spectrum(M(G))G∼P . (A quantitatively
strong version of this would imply lower bounds against the Sum-of-Squares hierarchy!)

Some highlights related to other models that low-degree lower bounds are related to.

• A heuristic from statistical physics, called the cavity method, was used to obtain predictions
for the algorithmic threshold for community detection in stochastic block models in [DKMZ11].
The paper where the low-degree divergence was introduced [HS17] proved that the low-
degree threshold for the block model matches the cavity method predictions.

• Under fairly general conditions on N and P , the work of [BBH+20] proved that the low-
degree threshold matches the threshold for the statistical query model, a restrictive query model
introduced in the context of learning theory.

• For a class of N and P , “Gaussian additive models”, the work of [BEAH+22] showed that
the low-degree threshold matches the one predicted by certain solution geometry-based
techniques from statistical physics.

• A similar theory was developed for estimation problems in the work of Schramm & Wein
[SW22].

References

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm.
Statistical query algorithms and low-degree tests are almost equivalent. arXiv preprint
arXiv:2009.06107, 2020. 7

[BEAH+22] Afonso S Bandeira, Ahmed El Alaoui, Samuel Hopkins, Tselil Schramm, Alexander S
Wein, and Ilias Zadik. The franz-parisi criterion and computational trade-offs in high
dimensional statistics. Advances in Neural Information Processing Systems, 35:33831–
33844, 2022. 7

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Infer-
ence and phase transitions in the detection of modules in sparse networks. Physical
Review Letters, 107(6):065701, 2011. 7

7

[Hop18] Samuel Hopkins. Statistical inference and the sum of squares method. PhD thesis, Cornell
University, 2018. 4

[HS17] Samuel B. Hopkins and David Steurer. Efficient Bayesian Estimation from Few Sam-
ples: Community Detection and Related Problems. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 379–390, 2017. 4, 7

[SW22] Tselil Schramm and Alexander S Wein. Computational barriers to estimation from
low-degree polynomials. The Annals of Statistics, 50(3):1833–1858, 2022. 7

8

	Prelude: information-computation gaps
	On proving hardness for average-case problems
	Problem set-up
	Case of planted clique
	Connections and broader discussion

