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These notes have not been subjected to the usual scrutiny of a formal publication. Caveat emptor!

In these lectures (22b and 23) we cover a reduction from a variant of planted clique to robust
sparse mean estimation due to Brennan and Bresler. Themajority of the lectures cover section 8.3.1
of the Diakonikolas-Kane book. Read that section first.

Our presentation diverges from theDiakonikolas-Kane version in the construction of thematrix
� in the proof of Lemma 8.28. Here’s the proofwe presented in class. Translating from the notation
in Diakonikolas-Kane Lemma 8.28, we have taken � = 0.01, � = 1.

Lemma 0.1. Let B, = ∈ N and � > 0. Suppose that : ≥ �(log B · B + =)/�2 for a sufficiently-large constant
�. Then there’s a matrix � with B rows and = columns where each column has 0.99B entries equal to 1

�
√
:

and ‖�‖ ≤ 1.

Proof. Let � be a random matrix with independent columns F1 , . . . , F= , where each column has
a random subset of 0.99B entries equal to 1/�

√
:, and the other 0.01B entries equal to (0.99/0.01) ·

(−1/�
√
:). Here we chose (0.99/0.01) so that the column-sums are 0. By construction, each column

of � has 0.99B entries equal to 1/�
√
:.

Nowwewould like to calculateE
∑
8≤= F8F

>
8
anduseMatrix Bernstein to boundE ‖∑8≤= F8F

>
8
−

E
∑
8≤= F8F

>
8
‖ – we can use Matrix Bernstein here because each term F8F

>
8
− EF8F>8 in the sum

above is independent. This would be easy if the entries of each F8 were independent of each other,
but they are not, because we constructed each to have 0.99B entries equal to 1/

√
:. We will first

show that the difference between our choice of random vector F and a similar one F′ where we
choose the entries independently is minimal.

Claim 0.2. Let 0, 1 ≤ B. Then EF(0)F(1) = EF′(0)F′(1) ± $(1/(B�2:)), where F′ is a random
vector where each entry is 1/�

√
: with probability 0.99 and (0.99/0.01) · (−1/�

√
:) with probability 0.01,

independently.

Proof of claim. Follows by explicitly calculating P(F(0) = 1/
√
:, F(1) = 1/�

√
:), and so on. �

This claim implies that ‖ EF8F>8 −
1

�2: �‖ ≤
1

�2: , and hence ‖ E
∑
8≤= F8F

>
8
‖ ≤ =

�2: . This is at most
0.00001 by hypothesis.
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Using the claim again, together with the observation ‖F8 ‖2 ≤ B
�2: with probability 1, we can

bound the variance term for matrix Bernstein as




E
∑
8≤=
‖F8 ‖2F8F>8






 ≤ $(=) · B

�2:
· 1

�2:
.

From Matrix Bernstein we can then argue

E






∑
8≤=

F8F
>
8 − EF8F>8






 ≤ $(√log B) · ( =B
�4:2
) + $(log B) B

�2:
.

Putting this together with our earlier bound on ‖ E
∑
8≤= F8F

>
8
‖ and using our assumed bound on

: finishes the proof.
�
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