Reduction from Planted Clique to Robust Sparse Mean
Estimation

Sam Hopkins

December 4, 2023

These notes have not been subjected to the usual scrutiny of a formal publication. Caveat emptor!

In these lectures (22b and 23) we cover a reduction from a variant of planted clique to robust
sparse mean estimation due to Brennan and Bresler. The majority of the lectures cover section 8.3.1
of the Diakonikolas-Kane book. Read that section first.

Our presentation diverges from the Diakonikolas-Kane version in the construction of the matrix
A in the proof of Lemma 8.28. Here’s the proof we presented in class. Translating from the notation
in Diakonikolas-Kane Lemma 8.28, we have taken ¢ = 0.01, 6 = 1.

Lemma 0.1. Let s, n € Nand 1 > 0. Suppose that k > C(logs - s + n)/n? for a sufficiently-large constant
C. Then there’s a matrix A with s rows and n columns where each column has 0.99s entries equal to ﬁ

and ||A|| < 1.

Proof. Let A be a random matrix with independent columns wj, ..., w,, where each column has
a random subset of 0.99s entries equal to 1/ nVk, and the other 0.01s entries equal to (0.99/0.01) -
(-1/ 17\/%). Here we chose (0.99/0.01) so that the column-sums are 0. By construction, each column
of A has 0.99s entries equal to 1/nVk.

Now we would like to calculate E };,, w;w; and use Matrix Bernstein tobound E || 3, w;w -
E},;c, wiw|| — we can use Matrix Bernstein here because each term w;w — Ew;w, in the sum
above is independent. This would be easy if the entries of each w; were independent of each other,
but they are not, because we constructed each to have 0.99s entries equal to 1/Vk. We will first
show that the difference between our choice of random vector w and a similar one w’ where we
choose the entries independently is minimal.

Claim 0.2. Let a,b < s. Then Ew(a)w(b) = Ew'(a)w’(b) + O(1/(sn?k)), where w’ is a random
vector where each entry is 1/nVk with probability 0.99 and (0.99/0.01) - (=1/nVk) with probability 0.01,
independently.

Proof of claim. Follows by explicitly calculating P(w(a) = 1/ Vi, w(b) =1/ 17\/%), and so on. O

This claim implies that || Ew;w " — n%kIH < n%k, and hence [|[E };., w;jw] || < n’;—k This is at most
0.00001 by hypothesis.



Using the claim again, together with the observation ||w;||? < ﬁ with probability 1, we can

bound the variance term for matrix Bernstein as
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From Matrix Bernstein we can then argue
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Putting this together with our earlier bound on || E };,, w;w/ || and using our assumed bound on
k finishes the proof.
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