
Algorithmic Statistics
Lecture 4: Learning a Gaussian

Samuel B. Hopkins

In lecture 2, we saw that learning high-dimensional probability distributions without some
assumptions requires a number of samples growing exponentially with dimension. Today we will
see how adding assumptions can bring the sample complexity down to a polynomial in dimension.

We start with a reminder about multivariate Gaussians.

Definition 0.1 (Multivariate Gaussian). A distribution on R3 isN(�,Σ) if it has density

?�,Σ(G) =
1

(2�)3/2(detΣ)1/2
exp

(
−1

2 (G − �)
>Σ−1(G − �)

)
,

where � ∈ R3 and Σ ∈ R3×3 is PSD.

Basic facts:

• E[-] = � and Cov(-) = Σwhen - ∼ N(�,Σ).

• Every Gaussian distribution is an affine transformation of the standard Gaussian N(0, �).
That is, if / ∼ N(0, �) and - = Σ1/2/ + �, then - ∼ N(�,Σ).

• The central limit theorem says that if you add a bunch of independent random variables, the
resulting random variable has an approximately Gaussian distribution. (We won’t need a
formal statement.)

Main question today: Suppose you are willing to assume that the population from which you’re
drawing samples is Gaussian. How many samples do you need to learn the distribution?

Such an assumption might be reasonable if you believe that the samples you’re observing are
well described by adding a bunch of independent contributions.

Theorem 0.2. Suppose -1 , . . . , -= ∼ N(�,Σ) are iid from a 3-dimensional Gaussian. Then

ETV(N(�̂, Σ̂),N(�,Σ)) ≤ $
(
3√
=

)
,

where �̂ = 1
=

∑
8≤= -8 and Σ̂ = 1

=

∑
8≤=(-8 − �̂)(-8 − �̂)>. Consequently, $(32/�2) samples are sufficient

to learn a 3-dimensional Gaussian to total variation distance �.

How to prove the theorem? We will first prove that it would be enough to learning “parameter
distance”. The “parameters” of a Gaussian are the mean and covariance (�,Σ), and learning in
parameter distance means that we find �̂ ≈ � and Σ̂ ≈ Σ. Here the choice of norm we use to
capture “≈” will be quite important! Then we will show that learning in parameter distance is
possible with $(32/�) samples. More formally, we will prove the following three lemmas, which
immediately imply the theorem.
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Lemma0.3. For any�, �,Σ, Γ, we haveTV(N(�, Γ),N(�,Σ)) ≤ $(‖Σ−1/2(�−�)‖)+$(‖�−Σ−1/2ΓΣ−1/2‖�).

Lemma 0.4. E ‖Σ−1/2(�̂ − �)‖ ≤ $(
√
3/=).

Lemma 0.5. E ‖� − Σ−1/2Σ̂Σ−1/2‖� ≤ $(3/
√
=).

As a reminder, the Frobenius norm of a matrix ", denoted ‖"‖�, is the entry-wise Euclidean
norm. And, ‖"‖� =

√∑
�2
8
where the �s are the singular values of ".

1 KL divergence between Gaussians

Proposition 1.1 (KL formula for Gaussians). For % = N(�,Σ) and & = N(�, Γ),

KL(%‖&) = 1

2

(
(� − �)>Γ−1(� − �) + tr(Γ−1Σ) − log det(Γ−1Σ) − 3

)
.

Derivation. By definition, KL(%‖&) = E-∼%
[
log

?�,Σ(-)
?�,Γ(-)

]
. Taking logs of the densities and simplify-

ing the quadratic forms yields

KL(%‖&) = 1

2
E%

[
(- − �)>Γ−1(- − �) − (- − �)>Σ−1(- − �)

]
+ 1

2
log

detΓ

detΣ
.

We have E%(- − �)>Σ−1(- − �) = TrΣΣ−1 = 3. For the other quadratic term, we can use

E%(- − �)(- − �)> = E%(- − � + (� − �))(- − � + (� − �)>

= Σ + (� − �)(� − �)>

and hence that
E%(- − �)>Γ−1(- − �) = Tr(ΣΓ−1 + (� − �)Γ−1(� − �) .

Finally, for the log(detΓ/detΣ) term, we can simplify to − log detΓ−1Σ by determinant rules. �

Two immediate corollaries of Proposition 1.1 that we will use:

(Same covariance) KL
(
N(�,Σ) ‖ N(�,Σ)

)
= 1
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� − �

2
Σ−1 . (1.1)

(Same mean) KL
(
N(�,Σ) ‖ N(�, Γ)

)
= 1

2 (tr(�) − log det� − 3) , � := Γ−1/2ΣΓ−1/2. (1.2)

2 Proof of Lemma 0.3

Let � = Σ−1/2ΓΣ−1/2. If any eigenvalue of � − � is Ω(1), then we are done, since in this case
‖� − Σ−1/2ΓΣ−1/2‖� = Ω(1)while TV(·, ·) ≤ 1.

Recall that for a symmetric matrix � with eigenvalues �1 , . . . ,�3, Tr� =
∑
8≤3 �8 , and det� =∏

8≤3 �8 , so log det� =
∑
8≤3 log�8 . Hence,

KL
(
N(�,Σ) ‖ N(�, Γ)

)
= 1

2 (tr(�) − log det� − 3) = 1
2 (

∑
8≤3

�8 − 1 − log�8)

where �1 , . . . ,�3 are the eigenvalues of Γ−1/2ΣΓ−1/2. Now,

(G − 1) − log G = (G − 1) − log(1 + (G − 1)) .
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Since the first term in the Taylor expansion of log(1 + (G − 1)) is (G − 1), we should expect this
difference to act like the quadratic (G − 1)2. Since we get to assume that the eigenvalues of �
are smaller than some universal constant, we can therefore assume that for each �8 , we have
(G − 1) − log(G) ≤ $(G − 1)2, meaning that∑

8≤3
�8 − 1 − log�8 ≤ $(‖� − �‖2�) .

Now the lemma follows from Pinsker’s inequality.

3 Estimators and parameter concentration

Given i.i.d. -1 , . . . , -= ∼ N(�,Σ), define the empirical mean �̂ = 1
=

∑=
8=1 -8 and empirical covari-

ance

Σ̂ =
1

=

=∑
8=1

(-8 − �̂)(-8 − �̂)>.

It is convenient to “whiten”: let /8 = Σ−1/2(-8 − �) ∼ N(0, �). Then

Σ−1/2(�̂ − �) = 1

=

=∑
8=1

/8 , Σ−1/2Σ̂ Σ−1/2 − � = 1

=

=∑
8=1

(/8/>8 − �) + Σ−1/2(� − �̂)(� − �̂)>Σ−1/2 .

Proof of Lemma 0.4. 1
=

∑=
8=1 /8 has coordinates distributed asN(0, 1= ). So

E ‖ 1
=

=∑
8=1

/8 ‖ ≤ (E ‖
1

=

=∑
8=1

/8 ‖2)1/2 ≤
√
3/= . �

Proof of Lemma 0.5. For any rank-one matrix EE>, we have ‖EE>‖� = ‖E‖2, so

E ‖Σ−1/2(� − �̂)(� − �̂)>Σ−1/2‖� = E ‖Σ−1/2(�̂ − �)‖2 ≤ 3/= .

We can do an explicit calculation for the other term, 1
=

∑=
8=1(/8/>8 − �). First consider an off-

diagonal entry of thematrix. Let 
1 , . . . , 
= , �1 , . . . , �= all be iid fromN(0, 1). Then an off diagonal
entry is distributed exactly like 1

=

∑=
8=1 
8�8 . So

E( 1
=

=∑
8=1


8�8)2 =
1

=2

∑
8 , 9

E 
8
 9�8� 9 =
1

=
,

since only the 8 = 9 terms in the sum contribute. An on-diagonal entry is distributed as 1
=

∑=
8=1(
2

8
−

1). So

E( 1
=

=∑
8=1

(
2
8 − 1))2 =

1

=2

∑
8 , 9

E(
2
8 − 1)(
2

9 − 1) ≤ $(1/=) .

Putting together the diagonal and off-diagonal cases, we have E ‖ 1=
∑=
8=1(/8/>8 − �)‖2� = $(32/=),

which completes the proof. �

As a remark, the essentially the same rates of estimation error for the parameters would hold if
we weakened the assumptions on the underlying distribution significantly – it would be enough,
for instance, for the distribution to be subgaussian. (Even much weaker assumptions are enough.)
But for such a broad class of distributions, we would not be able to relate parameter distance to
total variation.
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4 Matrix Concentration: Learning the Covariance in Spectral Order

In the foregoing, we saw how to learn the covariance Σ of a Gaussian in Frobenius norm using
≈ 32 samples. What if we found a weaker error norm acceptable? Here I want to illustrate that
the sample complexity of parameter learning is heavily dependent on the way that errors are
measured.

Recall that for matrices �, � we write � � � if � − � is PSD. What would it mean if given
samples -1 , . . . , -= ∼ N(0,Σ), we learned a matrix Σ̂ such that (1 − �)Σ � Σ̂ � (1 + �)Σ? One nice
interpretation is that Σ̂ would tell us an accurate estimate of every one-directional variance – for
every unit E, we would have E>Σ̂E = (1± �)E〈-, E〉2. (Learning in Frobenius norm corresponds to
a stronger guarantee about all degree-2 polynomials of-, rather than just those of the form 〈-, E〉2,
although this is a little more complicated to state – it’s not as simple as learning (1 ± �)E ?(-).)

Note that the minimum � such that (1 − �)Σ � Σ̂ � (1 + �)Σ is equivalently ‖� − Σ−1/2Σ̂Σ−1/2‖,
where ‖ · ‖ denotes operator norm, or maximum-magnitude eigenvalue, of a matrix.

Theorem 4.1. Let -1 , . . . , -= ∼ N(0,Σ) be iid 3-dimensional Gaussians. Then E ‖� − Σ−1/2Σ̂Σ−1/2‖ ≤
$(

√
3/= + 3/=), where Σ̂ is the empirical covariance.

There are many ways to prove this theorem. We will take the opportunity to introduce a very
useful general-purpose tool, theMatrix Bernstein inequality, which will allow us to prove a slightly
weaker statement (losing a log 3 factor).

4.1 Reminder about scalar concentration of measure

Let 
1 , . . . , 
= be independent random variables taking values in [−1, 1] with E 
8 = 0. Then
standard measure concentration tells us that

∑

8 acts like a Gaussian with variance �2 =

∑

2
8
, in

the sense that for every C > 0,

Pr(|
∑


8 | > C) ≤ exp(−Ω(C2/(�2 + C))) .

The form of this inequality is interesting – a Gaussian would be missing the additive +C in the
denominator of the fraction C2/(�2 + C). The usual interpretation here is that

∑

8 acts Gaussian

for C = $(�2), but for larger C the sum acts sub-exponential instead. If instead of 
8 ∈ [−1, 1] w.p.
1 we know 
8 ∈ [−', '] w.p. 1 for some other number ', the same inequality holds with �2 + 'C
in place of �2 + C; this is known as Bernstein’s inequality.

4.2 Diagonal matrices

We want to work up to the setting that 
1 , . . . , 
= are each 3 × 3 random matrices, so that we
eventually take 
8 = /8/>8 − �. On the way there, let’s imagine that 
1 , . . . , 
= are 3 × 3 diagonal
random matrices with E 
8 = 0 and ‖
8 ‖ ≤ 1 w.p. 1. ZThen

∑

8 is also a diagonal matrix, and

‖∑ 
8 ‖ is the maximum of 3 random variables, each obeying Bernstein’s inequality. Then using a
union bound across all 3 of these random variables, we obtain

Pr(‖
∑


8 ‖ > C) ≤ 3 exp(−Ω(C2/(�2 + C))) .
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4.3 Matrix Bernstein

Remarkably, it turns out that the same inequality holds even without the diagonal assumption on
the summands.

Theorem 4.2 (Matrix Bernstein inequality). Let 
1 , . . . , 
= be independent 3 × 3 random matrices with
‖
8 ‖ ≤ ' a.s.. And let �2 = max(‖ E∑


8
>8 ‖ , ‖ E
∑

>
8

8 ‖). Then for every C > 0,

Pr(‖
∑


8 ‖ > C) ≤ 3 exp(−Ω(C2/(�2 + 'C))) .

Furthermore, E ‖∑ 
8 ‖ ≤ $(�
√
log 3 + ' log 3).

4.4 Analysis of the empirical covariance

Nowwe are equipped to analyze the empirical covariance Σ̂. Wewant to analyze ‖Σ−1/2Σ̂Σ−1/2−�‖.
It will be enough to analyze ‖ 1=

∑(/8/>8 − �)‖. We would like to take 
8 = /8/
>
8
− � and apply

Matrix Bernstein. There’s one issue – there is no almost-sure upper bound on ‖/8/>8 − �‖.
There’s a standard trick here – we impose the almost-sure bound by fiat. Let


8 = (/8/>8 − �) · 1(‖/8 ‖ ≤ 10
√
3) − E(/8/>8 − �) · 1(‖/8 ‖ ≤ 10

√
3) .

Then E 
8 = 0 and ‖
8 ‖ ≤ $(3) a.s.. To apply Matrix Bernstein, we need to calculate (an upper
bound on) �2 =

∑
E 
2

8
. (Each 
8 is symmetric so the two terms in the max in the definition of �2

are identical.)
Since the 
8s are iid, it’s enough to look at just one of them; let 
 = (//> − �) · 1(‖/‖ ≤

10
√
3)−E(//>−�)·1(‖/‖ ≤ 10

√
3) for a standardGaussian/. ThenE 
2 � $(1)E(//>−�)21(‖/‖ ≤

10
√
3) � $(3)�. So �2 ≤ $(=3), and we get E ‖∑ 
8 ‖ ≤ $(3 log 3 +

√
=3 log 3); when we divide by

= we get $((3 log 3)/= +
√
3 log 3/=).

The only missing piece now is that
∑

8 is not exactly 1

=

∑
/8/

>
8
− �, because we introduced the

indicators 1(‖/8 ‖ ≤ 10
√
3). So we need to analyze

E ‖
∑


8 − (/8/>8 − �)‖ .

It’s enough to analyze E ‖∑(/8/>8 − �)1(‖/8 ‖ > 10
√
3)‖. Sloppy bounds are enough here. By

triangle inequality, this is at most = E(1 + ‖/‖2)1(‖/‖ > 10
√
3). By Cauchy-Schwarz, this is at

most $(=3)
√
Pr(‖/‖ > 10

√
3). Standard Gaussian concentration shows that this probability is

exp(−Ω(3)).
So, we got E ‖Σ−1/2Σ̂Σ−1/2 − �‖ ≤ $̃(3/= +

√
3/= + =3 exp(−Ω(3))). (The $̃ notation hides logs.)

We can get slightly different balance between the three terms if we change the threshold 10
√
3 to

something else, e.g.
√
3 log =.
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