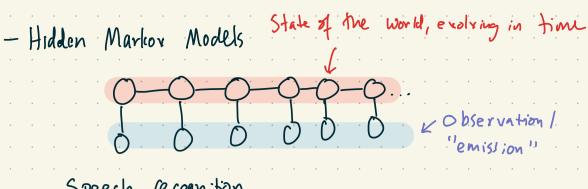
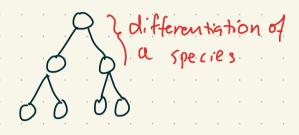
Lecture 45 Classical Interence & Structure Learning on

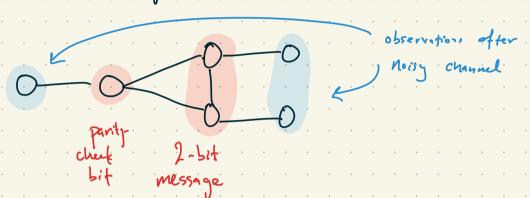
Trees


Last time: undirected graphical models, conditional indep, testing Ising vs uniform.

What else do we want to with graphical models?

Separate 2 settings:


- 1) Willing to assume the world is described by some known graphical model.
 - Delieve world is described by some unknown graphical model.
- Dobserve values of random variables corresponding to a Subset of modes. Infer something about observations / rest of graphical model.


Example models:

Speech recognition

- Evolution of genomes
- Error-correcting codes

Example inference tasks:

- Compute Marginal distribution Pr(xx) for some ACV
- Compute conditional distribution Pr(XA [XB=y)
 - Compute most likely x "mode".

These are classical - a whole course at MIT, "Algorithms for

Inference". So we will only scratch the surface here, then move on to other topics.

Naive algorithms: involve sum or maximization over all possible values for X - intractable ble (# of vals per note) possible values

In general shouldn't hope to beat naive algs by much - NP, #P hardness
But, can do (much) better in special cases.

On trees, all of these can be solved by dynamic programming!

Message passing, belief propagation, Viterbi, Sum-product,
max-product, junction tree.

Dynamic Programming for Marginal & conditional distributions

Computing marginal of conditional is \approx same-just question of whether we fix values of some nodes by introducing potential S(x) = S(

Problem: Given a tree T and factors { Yc} ce clique, of T / comple { Pr(xv=y)} , et, y - ie all 1-wise marginals.

Assuming discrete distributions over universe 12

Observation: only cliques in Tare edges + individual nodes.
Won't ue this, but for intition, therefore,
$P_{\Gamma}(x) \propto \prod_{i} \gamma_{i}(x_{i}) \cdot \prod_{j} \gamma_{i}(x_{i}, x_{j})$
injadjacent in tree
Root the tree at v. For any ut, let Tu be the graphical
model we get by restricting to Subtree rooted at u.
Let xv & Q.
$P_{\Gamma}(X_{v}=x_{v}) = \frac{1}{2} \sum_{x \in \Omega} \prod_{i \neq j} (x_{i}, x_{j}) \prod_{i \neq j} (x_{i}, x_{j})$
$= \frac{1}{2} \psi_{v}(x_{v}) \cdot \prod_{i \in \text{children}(v)} \sum_{x_{i} \in \Omega} \psi_{iv}(x_{i}, x_{v}) \cdot \psi_{i}(x_{i}) \cdot \sum_{x \in \Omega} \prod_{j \in T_{i}} \psi_{j}(x_{j}) \cdot \prod_{j \in T_{i}} \psi_{j$
If we knew , coud comple to comple PF(Xi=xi)
in O(Isl) time, and In O(Isl degree) time.
Can we a dynamic program, computing for each choice of
X; & I and each subtrue Ti, when compitation for T; happens before
its parent.
Time: O(n·degree-1212)
(compute Z by adding appropriate table entries.)

• Makes it look like would need $O(n^2)$ to compute all marginals,

but there is a dever way to do all at once in same $O(n\cdot degne\cdot (\Omega 1))$ time. (Can Google "sum product" or "Belief Progagation")

What happens on non-trees?

- Can view as a "message" passed by Xi to its

 pavent, construted from similar "wessages" it received from

 its Children.
 - Could use same formula for constructing messages and passing them around, but now on non-trees. "loopy BP".

 Heuristic, sometimes seems of in practice, maybe

 expected to work if graph has no short cycle;

 ("locally tree-like") and weak long-range

 Corpelations.
- Can try other alas MCMC, variational inference,...

 always heuristic, maybe we gravantees in special cases.

 take "Algorithms for Inference" @ MIT.

Moring on to 2:

Learning Graphical Models

Assume getting samples X1...Xn iid from some unknown graphical model.

What can we learn about it?

Folly-connected graph (Gepresent any distriction So need some assumptions.

2 learning tasks:

1) TV learning

2) Stritue learning - find the underlying graph

- how to disting ish no edge, edge of 19; = 1?

- need assumptions on Tijs.

Today: trees.

Chow-Liu (infinite sample version):

Instead of ild Damples, let's pretend me get access to distribution of

every pair of variables Xi, X;

- Comple I(xijXj) = E log Pr(xi,xj) = KL ({xi,xj} | {xij & {xij}})

- Let G be a graph when weight of edge iij is I(X; X;)

- Output maximum spanning tree of G

Reminder: = arg max weight (T)
The Ton vertice, of G

Theorem: Suppose T is a tree-structured graphical model. Then Char-Liu, in an Marginals of Ti return, T. (Exception: if there is another tree T' which can represent

Same distin, canget T'- MST will not be unique.)

Proof: Follows from 2 key claims:

DIF S is another tree-structured graphical model on the same Set of variables, s.t. for every edge i,j & S. Xi, Xj}s = { Xi, Xj}s and {xi}={xi}- for all i, then joint disting xi, k, under S The distribution of S = distribution of T iff S is a maximum spanning tree in G.

D For every spanning thee S of G satisfying hypotheses of O. 3 a distribution which is Markov wext. S

define a distin Markov wet. Sas in 2 So, let Sobe MST in Then that distinmust = T.

Proof of D: We have Shorthand for Proof (x)

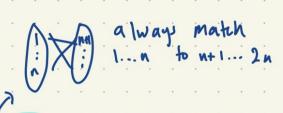
$$KL(T | S) = \mathbb{E} \log \frac{T(x)}{S(x)}$$

=
$$\mathbb{E} \log T(x) + \mathbb{T} H(x_i) - \mathbb{T} \mathbb{T} (X_i; X_{parents}(i))$$

If distrion S = distrion T, then this = 0. If not 0, then $\sum_{i} I(X_i; X_{parent_s(i)})$ must not be markingl

Proof of (2): deline dictribution via Pr(x) = Pr_ (xroot). IT Pr_ (x; (x) parents (i)).

Marginal match by induction on depth-


Wha	t abou	t finite	2 Sampl	257.							
	- estil - how	male I	C(X;;X;) using	empi them	rial 7	distin	· · · · · · · · · · · · · · · · · · ·			
	opt	interactions: add assure leave in Less in	How are TV - Le close Pan 7:	interactif dista	thion stri	enth rs mj	eed a	lot o	and to	då finja	
			Sample								
			ich is								
			ibution" Can get								
This !	Theorem	is out o	f slope	for	Mis cl		But W	e wil	\ disa	م) دو <i>م</i>	
	cu zenl	er. \									

Theorem: To test between:

null: D is uniform on {±13n

alternative: Dis a free-structured Ising model w1 TV(D, unit) > 0.0 requires $\Omega(n \log n)$ samples.

1	dea	
ı	NEd	

first, pick a random matching M on \$1,2,...,2nd, from a set S of "allowed" matchings.

Then, X1...XN ~ Ising model w/ Pr(X) & exp(\frac{B}{In} \subsetext{Ixixn(i)})

: If Hamming dist. between M, M = D(n), then TV(Pm, Pm) = 52(1).

Consider the distribution of [X: Xmii).

Under Pm, it is a sum of 1 independent ±1 bits,

Path w/ bias $\mathbb{E}_{X,X_{M(I)}} = \frac{\exp(\frac{1}{K}) - \exp(-\frac{1}{K})}{\exp(\frac{1}{K}) + \exp(-\frac{1}{K})} = \frac{1}{K} \pm O(\frac{1}{K})$

Hence, In Zxixmii) -> N(px, o(1)).

In particular, Pr (TX: XMI) > P) -> 1

Under PMI, bias is 0 for at least 22 (n) terms in the sum,

SO FET IXIXALI) & (1-D(1) P.

No longer a sum of independent terms, but variance is still 0(1).

So, Pr (In [Xi Xmii) 7 p) = O(1)

R2 w 1.

N samples.

Now we need a new tool to show that identifying the underlying making is not possible.

Fano's Inequality: Let M, X be joint random variables,

M discrete taking values in finite set M. Let $f(x) \in M$ take values in M. Then $Pr(f(x) \neq M) \ge \frac{H(M) - I(M; x) - I}{H(M)}$.

Intuition: if X doesn't contain much information about M, can't identify M using X.

How can we bound I (M; X,...XN) ?

Lemma I $(A;B) \leq \max_{\alpha_1,\alpha_1} KL(\frac{[B|A=\alpha]}{[B|A=\alpha]})$ distribution of B conditioned on $A=\alpha$

Deferring proof of lemma for now, how do we use it?

by tensorization.

Now, KL({XIM3 || {XIM'}) = [log exp(B Ixixmii) X~PM exp(E Ixixmii)

= $\mathbb{E} \frac{1}{n} \sum_{i} x_{i} (x_{M(i)} - x_{M'(i)}) \leq O(i)$

Applying Favo, if we tried to use a function $f(X_1...X_N)$ to guess M, we would have $Pr(f(X_1...X_N) \neq M) > 1 - \frac{O(N)}{\# possible matchings}$

Fact: there is a set of nem matchings all w/ Hamming dist > Jr(n)
So, if N=o(n/ogn) / can't identify M from X1... XN. []

Loose ends: 1) Proof of Fano's inequality

By data processing, I(M;X) = I(M;f(X))= H(M) - H(M|f(X)) =

let E be a O/1 r.v., E= 50 if f(KI=M Then H(MIf(KI)= H(M,EIf(KI),

50 (= H(M) - H(M, E | f(x)) = H(M) - H(E | f(x)) - H(M) E, f(x))

= H(M)-(-H(M)E, f(x))

= H(M)-1- Pr(E=1). H(M) E=1, f(x1) - Pr(E=0). H(M) E=0, f(x1)

= H(M)-(-Pr(E=1) + (M(E=1, f(x))).

Rearranging, we get

 $Pr(f(K) \neq M) = Pr(E=1) > H(M)-1-I(M;X) > H(M)$

Since conditioning reduces information.

$$I(A;B) = KL(\{A;B\} | \{A\}\emptyset\{B\})$$

$$= IE \log \frac{P_{\sigma}(A;B)}{P_{\sigma}(A)P_{\sigma}(B)}$$

convexity of KL divergence!