
Lecture 415 Classical Inference & Structur Learning on

--

Trees

↳time : undirected graphical models, conditio-

nal indep, testing Ising us uniform
.

What ele do we want to with graphical models ?

Separate 2 settings ·

① Willing to assume the world is described by

some known graphical model .

② Believe world is described by some unknown

graphical model .

① Observe valves of random variables corresponding to a

subset of nodes .

Infer something about observations) rest of

graphical model .

Example models :



- Hidden Markox Models
State of the World

, evolving in time

↓
0-0-0-0-0-0 ...

↓ddddd ↳ Observation /

"emission"

senrecognition

- Evolution of genomes adifferen o it

- Error-correcting codes

& observations often

<
-O

0- 0 E noisy channel

O-O
parity

cheek 2-bit
bit message

Example inference tasks ·

- Compute Prlobservations) = I Prix)
x matching

observed values on

observed nodes

- Compute Marginal distribution PrIxA) for some A CX

- Compute conditional distribution Pr(XA(XB = y)

"Posterior inference"

-

Compute most likely x - "Mode"
.

These are classical - a whole course at MIT
, "Algorithms for



Inference". So we will only scratch the surface here ,
then move on

to other topics .

Naive algorithms : involve sum or Maximization over all possible values for

NI
X intractable

,
blc # of vals per model possible values

In general shouldn't hope to beat naive als by much-NP , #P hardness

But ,
can do (much) batter in special cases .

On trees
,
all of these can be solved by dynamic programming !

Message passing ,
Belief propagation ,

Viterbi
, sum-product,

max-product ,
junction tree

....

Dynamic Programming for Marginal & conditional distributions

computing marginal & conditional is = same-just question of

whether we fix values of come nodes by introducing potential
1 if x = desired valueS(x) = 200 . w

.

Problem : Given a the T and factors [Yc]cecliques ofT
compute [PrIxx=y1 x++

, y-
ie all I-wise marginals .

Assuming discrete distributions over universe oh
.



⑳exation : only cliques inT are edges + individual nodes..

Won't use this
,

but for intition
,
therefore ,

Pr) < 4 ; /xis
.Hin

;
/Xi

,
xih

is m

ii j adjacent in tree

Root the tree at v
. For

any not ,
let To be the graphical

Model we get by restricting to subtree rooted at n
. ·

· V

Let xx =
.

Pr(Xx = x) =

= 2 14, xi)Tij (xi, xi) /,tx = 2T1xx)

= . Ticxil
;Ent, eriskly xalit children (v) Xier

ne

the things we Worldve multiplied
If we knew

,
could compute is to compute Pr(Xi=xi)

Ti

in 0(111) time
,
and / in O(1-1-degree) time .

Can use a dynamic program , computing for each choice of

xiteh and each subtree Ti
,
where computation for Ti happens before

its parent .

Time : O (n . degree - InM)

(compute I by adding appropriate table entries
. )



· Makes it look like world need O(nY to compute all marginals,

but there is a clever way to do all of once in same O(n degue · (1)

time .

(Can Google"sum product" or "Belief Propagation" (

What happens on non-trees ?

- Can View as a "message" passed by Xi to its

parent , constructed from similar "messages" it recieved from

its children .

- Could use same formula for constructing messages and passing them

around ,
but now on non-trees . "Loopy BP" ·

Haristic
,
sometimes seems ok in practice , Maybe

expected to work if graph has no short cycles

I"locally tree-like") and weak long-range

correlations ·

-

Can try other als - MCMC
,
variational inference

....

always heuristic
, Maybe wl guarantees in special cases .

falle "Algorithms for Inference" & MIT
.



Moxing on to ② :

LearningEalModels

Assume getting samples X .... Xu ind from some undown graphical model .

What can we learn about it ?

Fully-connected graph> represent any distr . So need some assumptions .

I learning tasks :

① TV learning
② Structure learning-find the underlying graph

- how to distinguish no edge, edge / Yij=I ?

- need assumptions on Mij's .

Today : trees
.

Chow-Lin (infinite sample version) :

marginal
Instead of iid samples, let's pretend we get access to distribution of

every pair of variables Xi
,

X;.

- Compute I(Xix; ) = 1 log4x
, xi)

= kL ((x,
x;31 (xi) a x53)

PrIxi)PrIxj)

-

Let G be a graph where weight of edge i
. j is I /Xi ; xil



- Output Maximum spanning tree of G

Reminder : arg max weight (T
Tree Tou vertices of G

Merem : Suppose T is a tree-structured graphical model . Then Chow-lin
,

an on

marginals of T , returns T .

(Exception : if there is another tree 5' which can represent

same distr
, cangett'-MST will not be

unique . )



Proof : Follows from I key claims :

① If S is another tree-structured graphical model on the same

set of variables
,

s . t . for every edge ije3 , [Xi ,Xis=3 Xi
,

x; 35
e

and Exis
,

= [xi) - for all i
,
then joint distin of X, X;

under S

the distribution of S = distribution of Tiff S is a maximum spanning

tree in G .

② For every spanning tree S of G7 a distribution which is Markov wort .
S

satisfying hypotheses of I .

So
,
let S be MST in T , define a distin Markox wit .

S as in D
.

Then that distin must
= T

.

Hof I : We have
Shorthand for Pry(x)

↓

KL(T1S) = E log s

= ElogT(x -E log S<x

e

indep of S

=FlogTIx) -E log. I Pr, /x: /x
parentsi h

=ElogTIxs - ElogT Pry (xilXparents i h

=E,
los +1x -/E I log Prepar,cil - EH(xi))

= logT1x + ,H: ) - II (Xi; Xparent
,
(i)

i



If distron s = distron 5
,

then this = 0
.

If not 0
,

then [I(Xi ; Xparent,(is) must not

1
be maximal

Pot : define distribution via Prg(x) = Pry(Xroot) :

I Pr, (Xilxparentssich .

marginals match by induction on depth -



What aboutiesamples ?

- estimate I(X;; x; ) using empirical distns

-how accurately do we need them ?

if interactions are really weak
, might need a lot of samples to distinguish

A B <
us

-
oroo

2 options :

- add assumptions on interaction strength

-learn in TV-if
a

us

a
hard to distinguish ,

describe close-by distr anyway .

also (Bhattacharyya-Gayen-Price - Xinodchandran]

Norm (Daskalabis-Pan : Assume alphabet R1=2 (binary Using model) .

With O(49) samples ,
Chow-Lint empirical estimates for I 1% ) learns

a distribution which is -close to true on in TV dist .

Aside : what "distribution" does Chow-hin output? As described above it only

gives the tree . Can
get full distribution by estimating Pr(xi/X parentlis) from samples .

this theorem is out of scope for this class . But we will discuss why

You can't beat O(n) samples , returnin to Le Cami memod from lecture 1
.

(Koehler]
therem : To test between :

null : D is uniform on [1132

alternative : Dis a free-structured Ising model wI TVCD
,
unit) >, 0 . 01

requires
of (nlogu) samples -
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B



HMix e



lif B
= 0 (11)



By data processing ,
I (mix) = I (M ; f(x1)

= H(M) - H(M(f(x)) = ⑪

let E be aOll r . v
,
E = 3 , 0 it - m .

then A(MIf(x1)= HCM ,EIfx ,

So & = H(M1 - H(M ,Elf(x))
= H(m) - H(E(f(x)) - H(m) E , f(x))

> H(M) -1 - H(MIE
, f(x))

= H(M)-1- PrIEN) · H(MIE=1 , f(x)-PrCE = 0 I HIMI Eo , fx
-

=8
= A (M1-1- Pr(E=1) · H(M)E= 1

, f(x) 1 .

Rearranging , we get

PrIfI=M1 = PrlE=1) Imix t Fimix

,

H(MIE = 1 , f(x))
*

Since conditioning reduces information .




